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Abstract Algebra Notes

Definition. Amap f : A — Bisasubset f C A x Bsuch that for all a € A, there existsa b € B
such that b is unique with (a,b) € f.

Definition. We write f(a) = bif (a,b) € f. Ais the domain of f and B is the codomain.

Definition. A binary operation on A is a map * : A X A — A such that x(a3,a2) = a3 xa for
ai,a; € A.

Definition. A binary operation x is associative on A if foralla,b,c € A, ax (b*c) = (axb) *c.
Definition. An element e € A is an identity element of x if foreacha € A,exa =axe = a.

Definition. An element 4 € A has an inverse under x if there exists a b € A such thataxb =
bxa=e.

Definition. A set A with an associative binary operation « is a group if A has an identity element
under x and every a € A has an inverse.

Definition
A group is a pair (G, ) where G is a set and « is a binary operation on G such that
1. Foralla,b,c € A,ax(bxc) = (axb) *c.

2. There existsane € Gsuchthataxe =exa =aforalla € G.

3. Foralla € G, thereexistsab € Gsuchthataxb =bxa =e.

Definition. A group (G, %) is abelian or commutative if forallg,h € G, gxh =h*g.

Theorem

Let (G, ) be a group.
1. eis unique.
2. g lis unique.
3.V5€G,(s) =g
4. Vg, h € G, (gxh) 1 =htxg L
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Proof

We may prove each part separately.

1. Suppose ¢, ¢’ are identity elements. Then for alla € G,

axe=e*xa=a (i)
axe =éxa=a (ii)
/

By (i), ¢ = ex ¢’ and by (ii), e = e x ¢’. Therefore, e = ¢'.

2. Supposed axb = bxa = e, then

Thus, b = a1

3.7 % (g ) '=e=glxg By (i) g=(g) .
4. Consider (axb) x (b='xa™1).

(axb)*x (b xa ) =ax(bxb ) xa?

Thus, (b~ xa=!) = (axb)~ L.

Definition. Let [n] = {1,2,...,n}. The symmetric group denoted S, of degree n is the set of all
bijections on [n] under the operation of composition.

Sy = {0 :[n] = [n] | ois abijection}
Definition. The order of (G, ) is the number of elements in G denoted |G]|.

Definition. Let n > 2. The dihedral group of index 7 is the group of all symmetries of a regular
polygon P, with n vertices in the Euclidean plane.

Symmetries of P, consist of rotations and reflections.

Choose a vertex v. Let Ly be the line from the center of P, through v. Let Ly be Ly rotated by %k
for 1 <k < n. Let 0y be a reflection about L. Let px be a rotation about 27”", 1<k<n.
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Definition. A subset S C G of a group (G, *) is a set of generators, denoted (S) = G, if and only
if every element of G can be written as a finite product of elements of S and their inverses.

Definition. Any equation satisfied by generators is called a relation.

Definition. A presentation of G, denoted (S | R), is a set of generators of G and relations such
that any other relation can be derived by those given.

Dy, = (r,s | 1" = s =1,rs = sr*1>

Definition. Thecycleso = (0102 ... 0y)and T = (11 T2 ... Ty) are disjointif o; # 7ifor1 <i <n
and1 <j<m.

Definition. A cycle of length 2 is called a transposition.

Definition. An expression of the form (a; ay ... a,) is called a cycle of length m or an m-cycle.

Leta = (a1 az ... aym)and B = (by by ... by). If a; # b; for any i, j, then a = Ba.

Every permutation can be written as a product of disjoint cycles.
A cycle of length n has order n.
Let a1, a5,. .., &, be disjoint cycles. Then,
lqag ...y = lem(|aq ], |a2), ..., Jan])
Every permutation is S, is a product of 2-cycles (which are not necessarily disjoint).

Ifa = B1B2...Br = 1172 .- s where B;, 7; are transpositions, then r and s have the
same parity.

Definition. If r and s are both odd, « is called an odd permutation. If r and s are both even, « is

called an even permutation.

Definition. The set of even permutations in S, form a group called the alternating group, denoted
An .

Note. [A,;| = % forn > 1.

Definition
Let (G, *) and (G/, *) be groups. A map of sets ¢ : G — G’ is a group homomorphism if for
alla,b € G,

p(axb) = g(a) x ¢(b)

The following are two very simple examples of homomorphisms.

Trivial Homomorphism

¢:G—=G,9(g)=eVgeG

Identity Homomorphism
¢:G—G,9(g) =g VgeG
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Definition. If ¢ : G — G’ is a homomorphism, the domain of ¢ is Dom(¢) = G, the codomain of
¢ is Codom(¢) = G/, the range or image of ¢ is ¢(G) = {¢(g) : § € G} C G’ denoted Range(¢)
or im ¢.

Definition

A homomorphism which is bijective is called an isomorphism.

¢ : G — G’ is an isomorphism if and only if there exists ¢ : G’ — G such that ¢ is a homo-
morphism and po¢p = 1, o ¢ = 1g, i.e. P is an inverse homomorphism to ¢. We say G is
isomorphic to G'by G 2 G or ¢ : G = G'.

Definition

Let (G, ) be a group. A subset H C G is a subgroup if (H, *) is also a group.

If H# @and H C G, H < G or H is a subgroup of G if and only if
1. H is closed under x (Vhy,hy € H, hi x hy € H).

2. His closed under inverses (h € H = h~! € H).
Note. The following is notation for arbitrary and abelian groups.

x xy — xy for arbitrary G, x + y for abelian G
e — 1 for arbitrary G, O for abelian G

For an arbitrary subset A C G,and g € G,
gA:{ngItZEA} Ag:{ag:aeA} gAg_lz{ggg_l:geA}

Theorem (Subgroup Criterion)
Let® # HC G,H < Gifandonlyif Vx,y € H,xy ' € H

Definition. Let A C G be any subset. The centralizer of A in Gis Cg(A) = {g € G: gag™! = a}
and it is the set of elements in G which commute with all elements of A.

Co(A) <G

Proof. First we show that the centralizer is not empty. 1a = al = a4, Va € A =1 € Cg(A)
= Cg(A) # 0so the centrahzer of A is not empty. Let x,y € Cg(A). We want to show that
xy~! € Cg(A) or that xy~! € Cg(A). We do this by showing that (xy ') a (xy~!) o

(xy’l) a (xy’l)_l = xy’layx’1

=X (y‘lay> x~!
= xax~! (v € Cc(A))
=a (x € Ce(A))

Since this subset satisfies the Subgroup Criterion, the centralizer C;(A) is a subgroup of G.
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Definition. The center of a group G is denoted Z(G) = {g € G : gx = xg, Vx € G}. Z(G) =
Cc(G) < G. Z(G) is the set of elements of G which commute with all elements in G. If G is
abelian, Z(G) = G.

Definition. The normalizer of Ain Gis Ng(A) = {g€ G:gAg ! =A}or{geG:gqag ' =a' €
A}

Co(A) < Ng(A) <G

Definition. A group action of a group G on a set A isamap G x A — A such that (¢142) -2 =
21-(g2-a),Y¢1,92 € G,Vac Aand1-a =a,Va € A. Itis denoted G O A.

Definition. Suppose G O A, the stabilizerofa € AinGisG, ={g€ G:g-a=a}. G, <G.

Definition
An equivalence relation £ on a set S is a subset £ C S x S which is reflexive, symmetric, and
transitive. We write (a,b) € £ < a & bora ~ b.

1. a~a

2.a~b&sb~a

3.a~bb~c=a~c

Definition. The equivalence class of a € Sis [a] = {b € S:a ~ b}

Definition. The quotient set of S under ~ is S/~= {[a] : a € S}.
Q={(a,b)eZxZ:b#0}/~,(ab)~ (c,d) = ad = bc.

Definition. The quotient set comes equipped with the projectionmap 7 : S — S/~ where a
[a] = 7(a). This map is surjective by definition.

Definition

A group G’ is a quotient group of a group G if

1. G' = G/~, G’ is the quotient set of G under an equivalence relation ~.

2. The projection map 77 : G — G’ = G/~ is a group homomorphism.

Definition. Let ¢ : G — G’ be a homomorphism and let g’ € G'. The fiber over ¢’ is ¢~ 1(g') =
8§€G:9(g) =g}

All quotient groups come from subgroups.
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Proof

Let ¢ : G — G’ be a homomorphism, then ¢ induces an equivalence relation on G. Let x ~
y < ¢(x) = ¢(y). But ¢ is a group homomorphism, so ¢(x) = ¢(y) & ¢(x)e(y) ! =1c &

p()p(y™) =1 glxy™') =1.Sox ~y & glxy™!) =1 LetK = {g € G: 9(g) = 1}.
Then x ~y < xy~! € K. Recall K = ker ¢ < G.

Let G’ be a quotient group of G. Then x ~ y < [x] = [y] & 7(x) = n(y) where 7 : G — G’
is the projection. But 77(x) = 7(y) < xy~! € ker ¢.

Definition. The right coset of a subgroup H of a group G by the element x € Gis Hx = {hx : h €
H}. The left coset, denoted xH is denoted similarly.

Let ¢ : G — G’ be a homomorphism and K = ker ¢. Then xKx~! C K, Vx € G.

Proof. We must show ¢(xkx~1) = 1g for x € G, k € K. Then, ¢(xkx!) = ¢(x)p(k)p(x~!) =
p()p(x) " =g

Definition

The subgroup N < G is normal if xNx~1 C Nforall x € G. Itis denoted N < G.

ker ¢ 4G for any homomorphism ¢ : G — G'.

Theorem

Let N < G. Then the following are equivalent.
1. NG (xNx ' C N, Vx € G)
2. xNx™1=N

3. xN = Nx

4. Vx,yeG xy'eN&sy xeN
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Proof

(1) = (2) Assume Vx € G, xNx~! C N. We want to show xNx~! = N. We do this by
showing N C xNx~ L. Letx € G, np € N. We show 19 € xNx~!. Note thatx € G = x~ ! € G.
Thus, x 1N (x_l)_1 C N since N < G. Thus there exists n such that x " nx = n; € N.
no = x (x npx) x™1 = xmyx~ € xNx~ L.

(3) = (4) Assume Vx € G, xN = Nx. Let x,y € G. We want to show xy~! € N < y~'x € N.
So we must show this is true in both directions. Suppose xy~! € N. Then there exists an
n; € N such that xy~! = ny. Thus, x = my € Ny = yN by assumption. So x € yN. Thus
there exists n, € N such that x = yny, = y‘lx = ny € N. Thus, xy_l € N = y‘lx € N.
Similarly, y'x € N = xy~! € N.

Let H < G. Then, x ~ y < y~'x € H is an equivalence relation on G.
Proof. We want to show ~ is reflexive, symmetric, and transitive.
lL.x~x:xlx=1€eH
2. x~ys>y~xx~ysy xeH=>xlye Hey~x
3.x~yy~z=x~zy xeHzWeH=(zy x)=zxeHex~z
Thus, ~ is an equivalence relation on G.
Any subgroup gives an equivalence relation.

Definition. An equivalence relation on a set S is the same as a partition of S. P = {A1, A, ...},
A; C SSUChthatSUieNAi,AiﬂA]‘ =0,i 75] a~b<sabeA;.

ForH< G,x~y <y 'x € H& xH =yH (Hx = Hy).

Proof. Suppose y~'x € H. We want to show that xH = yH or xH C yHandyH C xH.y 'x € H
implies that there exists a h; € H such that y~'x = hy. Thus,x = yhy = x € yH. y 'x e H &
x~ly € H which implies that there exists a hy € H such that x ™1y = h, = y = xh, € xH.

Note. [x] = xH.

For N < G, let G/N = {xN : x € G}. Define xN - yN = (xy)N. Then G/N is a
group if and only if N < G.

G/N =G/~ (x~y< xN=yN)
Every quotient group is G/ N for some N.

n:G—> G/~ kern<G,G/~=G/ker.

If H < G and G is abelian, then H < G.

Page 7 of 22



Jacky Lee Abstract Algebra Notes May 18, 2020
y g y

If G is a group and ~ is an equivalence relation on G, then the quotient set G/~ is a quotient
group if and only if the projection map 7 : G — G/~, m(x) = [x] is a homomorphism.

If N I G, then G/N is a quotient group, where G/N = {xN : x € G} and xN - yN = (xy)N.

These notions of quotient groups are equivalent.

If ~ is an equivalence relation and G/~ is a quotient group, then there exists a
homomorphism 7w : G —+ G/~ and ker 7 < G.

Proof. x ~y & 7t(x) = n(y) & n(y 'x) =1 & y x € ker m & xker m = yker 7.

If N<G, definex ~y < xN =yN < y~'x € N. Then, G/~= G/N, [x] =xN, 7 : G — G/N,
7t(x) = xN, ker 7t = N.

Every subgroup of an abelian group is a normal subgroup.
Definition. §" C R""1, §" = {(x1,x2,...,Xy11) : _x? =1}

For H < G, the relation x ~ y & xH = yH < y !'x € H is an equivalence relation and thus
partitions G into equivalence classes.

G= W], KNy =9, [x] # [y]

x€G
G= UxH, xHNyH =0, x =y
xeG

Let H < G. The number of right cosets of H equals the number of left cosets of H.

Proof. Let R = {Hx : x € G} and L = {xH : x € G}. We construct a bijection L — R. Define
f:R— Lby f(Hx) = x 'H, and define g : L — Rby g(xH) = Hx"!. Then f and g are mutually
inverse. Hence R <+ L.

Definition. The number of distinct left cosets of H in G is called the index of H in G, and is
denoted [G : H|.

Theorem (Lagrange’s Theorem)
If H is a subgroup of G, |G| = |H|[G : H].

Corollary. In a finite group, the order of every element divides the order of the group.
Corollary. A group of prime order is cyclic.
Corollary. Let G be a finite group and let a € G. Then, al®l = 1.

Let ¢ : G — G’ be a homomorphism. How far is ¢ from an isomorphism? How can ¢ fail to be an
isomorphism?

1. ¢ could fail to be injective. (ker ¢ # {1})

2. @ could fail to be surjective.
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Theorem (First Isomorphism Theorem)

Let ¢ : G — G’ be a homomorphism. Then ker ¢ <G, im ¢ < G’ and
G/ kerp Zimg

There exists an isomorphism 6 : G/ ker ¢ — im ¢ such that

G—*% ¢

n /D !

G/ ker g —f & im )
The curved arrow in the middle means the diagram is commutative, i.e. ¢ = 1-6- 7. The curved

arrow means it is injective.

Proof. Define 6 : G/ ker ¢ — im ¢ by 6(x ker ¢) = ¢(x).
First we show that 6 is well-defined. Suppose x ker ¢ = y ker ¢. Then,

xkerp = yker ¢ < y 'xker ¢ = ker ¢
=y lx ckerg
ey lx)=1
S o) To(x) =1
& 9(x) = o(y)
& 0(xker ¢) = 0(yker )

Thus, 6 is well-defined.

Then, we show that 6 is a homomorphism. Let K = ker ¢.

6(xKyK) = 6(xyK)

Thus, 6 is a homomorphism.

Then, we show that 0 is injective.

0(xK) = 0(yK) & ¢(x) = o(v)
S oy) Te(x) =1

Sy lx) =1
sy lxekK
< xK =yK
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Thus, 6 is injective.
Then, we show that 6 is surjective. Let y € im ¢. There exists xK € G/K such that (xK) = y. We
know there exists an x € G such that ¢(x) = y. 0(xK) = ¢(x) = y. Thus, 6 is surjective and 6 is
an isomorphism.

Leta € G. If |a| = oo, then (a) = (Z,+). If |a] = n, then (a) = Z, = Z/nZ.

Proof. Consider Z = G defined by 7t(k) = a*.

Definition. Let (A, %) and (B, x) be groups. The direct product or direct sum of A and Bis A &
B={(ab):ac Abec B} where (a1,by) - (ay,by) = (a1 xap, by xby) € A® B.

Definition. In a group G, define a ~ b < Jx € G such that b = xax~!. This is an equivalence
relation and a and b are conjugates.

Definition. For any x € G, the inner automorphism of G induced by x is Ty : G — G defined by
Te(g) = xgx~ L.

Definition. The set of all inner automorphisms of G is a group, called the inner automorphism group,
and is denoted Inn(G) = {Ty : G — G | x € G}.

G/Z(G) = Inn(G)

Proof. Consider ¢ : G — Inn(G) defined by x — T,. Then,  is surjective, i.e. im ¢ = Inn(G). We
then determine the kernel of the homomorphism.

kerp = {x € G:y(x) =1}
={xeG:T:(g) =g VYg€G}
={xeG:xgx =g, Vge G}
={xeG:xg=gx, Vge G}
= Z(G)

By the first isomorphism theorem, G/Z(G) = Inn(G).

Theorem (Third Isomorphism Theorem)
Let G be a group. Let A<JG,B<JG.If AC B,then A<B,B/A<G/A, and

(G/A)/(B/A) = (G/B)
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Proof
First we establish A <{B. A < Bbecause A < Gand A C B.

A<B< bAb ' C A, VbeB

AJG e xAx 1 C A VxeG
But BC Gsob € G. Thus, bAb~! C A,Vb € Band A < B. Thus, A < B and we may construct
B/A.

We first show B/A < G/A. Itis closed under multiplication since (b1 A)(bpA) = (b1b2)A €
B/ A because B is a group. It is also closed under inverses since (bA)~! = b~'A € B/ A.

We then show B/A <G/ A by showing x(B/A)x™! C B/A,Vx € G/A. Letx € G/A & yA,
y € G. We want to show (yA)(B/A)(yA)~! C B/A. Letz € (yA)(B/A)(yA)~!. Then, there
exist ay,a, € A, by € B such that

z = (ya) (b1 A)(y~'a2)
= y(albl)Ay*1a2
= y(albl)y_lAaz

Weknowa, € A= Ay = Aand ACB=a4, € ACB=a; € A= ai1b; € B. Thus, there
exists by € B such that a1b; = by. We substitute these in to get

z=yby 'A

We know B <G = yBy~! C B. Thus, there exists a b3 € B such that ybyy~' = b3 € B. We
then get z = b3 A. Sincez = b3A € B/A, B/A <G/ A.

Now we prove (G/A)/(B/A) = (G/B). We define the homomorphism w : G/A — G/B
such that w(xA) = xB. We show that w is well-defined. If xA = yA, then

xA=yAey'xe ACB
=y lxcB
< xB=yB
< w(xA) = w(yA)

We may then determine the kernel and image of the homomorphism.
imw={xB:x€ G} =G/B

kerw = {xA:w(xA) =B} ={xA:xB=B} ={xA:x€ B} =B/A
By the first isomorphism theorem, (G/A)/ kerw = imw so (G/A)/(B/A) = (G/B).

There is an isomorphism 6 : (G/A)/(B/A) — G/B such that this diagram com-
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mutes.
G/A
G wﬁ)/w/m
: /
0
G/B

Theorem (Second Isomorphism Theorem)
Let G be a group, A < G,and N < G. Then AN < G, N<AN,and ANN < A. Also,

(AN)/N= A/(ANN)

Proof

Let ¢ : A — AN/N such that a — aN. Then by the first isomorphism theorem, (AN)/N =
A/(ANN).

We look at an example of the third isomorphism theorem. Let G = Z, A = 12Z, and
B = 47Z. We observe that A < B < G so the conditions for the third isomorphism theorem are
satisfied.

G/A=127/12Z = {0,1,...,11}(mod 12)
B/A =4Z/12Z = {0,4,8}(mod 12)
(G/A)/(B/A) = {0,1,2,3}(mod 4) = Z/4Z
(Z/12Z)/(4Z./12Z) =~ Z./AZ

We look at an example of the second isomorphism theorem. Let G = Z, N = 127, and
A = 8Z.
ANN ={0,+24,448,...} =247

AN = {0,+4,+8,...} = 4Z
AN/ A = 47./12Z = {0,4,8} (mod 12)
A/(ANN) = 8Z/24Z = {0,8,16} (mod 24)

AN/N=Z/3Z = A/(ANN)
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Definition
Aring (R, +, ) is a set together with two binary operations, called addition and multiplication
respectively, satisfying the following three axioms.

(a) The set (R, +) together with addition is an abelian group.
(b) The binary operation - is associative on R.

(c) The distributive law holds in R; for all a,b,c € R,

(a+b)-c=(a-c)+(b-c)

a-(b+c)=(a-b)+(a-c)

Definition. The ring R is commutative if multiplication is commutative.

Definition. The ring R has an identity, or unity or contains a 1 if there is an element 1 € R such
thatforalla e R,1-a=a-1=ua.

Note. By abuse of notation, multiplication - may be denoted by simple juxtaposition, i.e. a-b = ab.

Note. For a ring with 1, the condition of commutativity under addition is redundant. Note that
foranya,b € R,
(1+1)(a+b)=1(a+b)+1(a+b)=a+b+a+b

(1+1D)(a+b)=1+Da+(1+1)b=a+a+b+b
Therefore,a +b+a+b =a+a -+ b+ b and therefore a + b = b + a. Thus R is abelian.

Definition. A ring with identity is a division ring if every nonzero element has a multiplicative
inverse.

Definition

A field is a commutative division ring.

The following are two very simple examples of rings.

The Zero Ring

Let R = {0}. Then R is a ring and is called the zero ring.

Trivial Rings

For any abelian group (G, +), consider the ring (G, +, -), where multiplication is givenby a - b = 0
foranya,b € G.

Let Rbe aring,and 4,b € R.
(@ 0a=a0=0

(b) (—a)b = a(—b) = —(ab), where —(a) is the additive inverse of a.
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(©) (—a)(=b) = ab
(d) If R has identity 1, then it is unique and —a = (—1)a.

Definition. A nonzero element element a of a ring R is a zero divisor if there is anonzero 0 # b €
R such that ab = 0 or ba = 0.

Definition. Let R be a ring with identity. An element a of R is a unit if it has a multiplicative
inverse, i.e. there is some b € R such that ab = ba = 1. The set of units of R is denoted R*.

Definition

An integral domain is a commutative ring with identity which has no zero divisors.

Let R be an integral domain, and leta,b,c € R. If ab = ac, thena =0or b = c.

Definition. Let R be a commutative ring with 1. For any ag, a1, ...,a, € R, the expression
p(x) = ag + arx + axx* + ... + ax"

is a polynomial in R with coefficients ag, a1, . . ., a,. If a, # 0, then p(x) has degree n. The set of all
polynomials in R is denoted R|[x] or R adjoin x. R[x] is a ring (called the ring of polynomials in R
in one variable) under “usual” addition and multiplication. Let p(x) = ap + a1x + ... + a,x" and
q(x) = by + bix + ... + by x™, and without loss of generality n > m. Then,

p(x)+q(x) = (ap+bo) + (a1 + b1)x + ...+ (a, + by)x"

where by = 0 for k > m and

@) = 3 (Y apst
k=0 itj=k

Note. Polynomials are not determined by their values

The following is a formal construction of the ring of polynomials in R.

Let R be a commutative ring with 1. R[x] is the set of all tuples p(x) = (ap,a1,...,a,) € R® =
[Len R = @ienR, ie. ax € R where 3n € IN such that a; = 0 for k > n. The smallest such 7 is the
degree of p(x). If p = (ap,a1,...,a,,0,...)and g = (bo, b1, ..., by, 0,...), then

p+aq=(ao+bo,ar+by,...,an+by0,...)

pq = (co,c1,---,¢,0,...), ck = Z a;b;
i+j=k
Definition. Let R be any ring M, (R) = {n x n matrices with entries in R}, A = (a;;), B = (bjj),
(A+B)ij=aj+bj, A-B=C,cij =Y, ajkbyj. This is the ring of n X n matrices over R or with
entries in R. If R has 1, then

1 ... 0
I=1: . 1| =1€ My(R)
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Definition. GL,(R) is the group of units of M, (R) and is called the general linear group.

Definition. Let R be commutative with 1. Let G = {g1, ..., 4} be a finite group. The group ring
RG of G with coefficients in R is the set of all formal sums

Mg+ a2+ ...+ an8n
where a; € R,
(1814 ...+ angn) + (11 + ...+ bugn) = (a1 +b1)g1 + ...+ (an + bn)gn

(a181+ ...+ angn) - (1§71 + ..+ bugn) = 181 + - .. + cugn, Where ¢ = Z a;b;
8i&j=8k

Note. 1-g¢; =g, ;-1 = a;, (a;8;)(bjg;) = (a:b;)(8ig))
G=54 R=7Z.
x=2(12)+ (23) +7(124) y =3(1) +2(23)

x+y=3(1)+2(12)+3(23)+7(124)
xy = 6(12) +4(12)(23) +3(23) +2(1) +21(124) +14(124)(23)
=2(1)+6(12)+3(23) +4(123) +21(124) +14(1234)

Definition
A subring S of aring (R, +, -) is a subgroup S < (R, +) which is closed under the multiplica-
tive structure of R.

A subset S of the ring R is a subring if and only if S is closed under subtraction and
multiplication.

Proof. This follows immediately from the fact that a subset H of an abelian group G is a subgroup
if and only if H is closed under subtraction.

Definition. The center of a ring A is the set of elements 2 € A such that ax = xa for all x € A. The
center of A is a subring of A.

Definition
Let R and S be rings. A ring homomorphism is a map of sets ¢ : R — S such that for all
a,b R,

p(a+b)=¢a)+ o)
@(ab) = ¢(a)p(b)

Definition. The kernel of the homomorphism ¢ : R — S is given by

kerg ={reR:¢(r)=0€ S}

Definition. A ring isomorphism is a bijective homomorphism.
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Definition

A subring I of R is a left ideal of R if ] is closed under left multiplication by elements from R,
i.e. vl C I forallr € R. Similarly, I is a right ideal of R if I is closed under right multiplication
by elements of R, i.e. Ir C I for all r € R. A subring which is both a left and right ideal is
called a two sided ideal, or simply ideal.

Definition
The quotient ring R/ of the ring R by the ideal I C R is the quotient group of cosets R/
under the operations

(r+D)+(s+I1)=(r+s)+1 (r+1I)-(s+1)=(r-s)+1

forallr,s € R.

For any ring R and ideal I, R/ I is a ring.

If I is any ideal of R, the map ¢ : R — R/I defined by r — r 4 I is a surjective ring
homomorphism with kernel I.

Theorem (First Isomorphism Theorem for Rings). If ¢ : R — S is homomorphism of rings, then
ker ¢ is an ideal of R, im ¢ is a subring of S, and

R/ ker ¢ =im¢

Theorem (Second Isomorphism Theorem for Rings). Let R be a ring, A a subring and B an ideal
of R. Then A+ B={a+b:a € Abc B} isasubring of R, AN Bis an ideal of A and

(A+B)/B=A/(ANB)

Theorem (Third Isomorphism Theorem for Rings). Let I and | be ideals of the ring R such that
I C J. Then J/Iis anideal of R/I and

(R/D)(J/T) = (R/])
Theorem (Fourth Isomorphism Theorem for Rings). Let I be an ideal of R. The correspondence
A+— A/l

is an inclusion preserving bijection between the subring A of R containing I and the set of subrings
of R/I. Further, a subring A containing I is an ideal of R if and only if A/I is an ideal of R/I.

Definition
Let A C R be a subset. Then the ideal generated by A is the smallest ideal of R containing A,
and is denoted (A).
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Note. In this context, “smallest” means all other ideals containing A also contain (A). In other
words, AC ] = (A) CJ.

(A) is the intersection of all ideal I containing A, or

(=1

ACI

Proof. R is an ideal of itself containing A and the intersection of nonempty ideals is an ideal. By
definition the intersection contains A. Therefore, ()4 I is an ideal containing A. Since (A) is the
smallest ideal containing A, (A) C Ny I.

On the other hand, suppose x € (4c;I. Then for any ideal I containing A, x € I. But (A) is
an ideal containing A. Thus x € (A). Therefore, Nsc; I € (A). Thus, (A) = Nac; .

If R is commutative, then
(A)=RA = AR

where
RA={ra;+mrna+...+ra,:r,€R,a, € A,neZ}

and AR is define similarly.

Definition. Anideal generated by a single element is called a principal ideal.

Definition. An ideal generated by a finite set is called a finitely generated ideal.

Definition. Anideal I of a ring R is proper if it is a proper subset, i.e. I # Rand I C R.

Definition. A proper ideal M of a ring R is maximal if whenever [ is anideal of Rand M C I C R,
then M =ITor M = R.

Consider (x —4) € R[x].

(x—4) = ({x—4}) = {f/(x)(x —4) : f e R[x]}

We claim (x — 4) is maximal in R[x]. Suppose (x —4) C I C R. We want to show | = R =
R[x]. There exists f(x) € I with f(x) ¢ (x —4). Recall polynomial long division. Vf(x),g(x) €
R[x],3q(x),r(x) € R[x] such that

f(x) = q(x)g(x) +r(x), degr(x) < degg(x)

In our case, g(x) = (x —4), with degr(x) < 1. This implies that r(x) = r € R so we can rewrite
our expression as

f(x) =q(x)(x —4) +r
Since (x —4) C I, weknow x —4 € Tand g(x)(x —4) € I. Since I isa subring, f(x) —q(x)(x —4) =
r € I. Since f(x) ¢ (x —4) and q(x)(x —4) € (x —4),r # 0. Since 0 # r € R, r is a unit in R[x].
If r € Iis a unit, then I = R because r being a unit —- uleR = uvluel = 1€l =
Vr € R,¥1 € I = [ = R. Therefore, I = R[x] and (x — 4) is maximal.
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Definition. A proper ideal P of a commutative ring R is prime if ab € P impliesa € Porb € P
foranya,b € R.

Consider 2Z C Z. We claim 2Z is a prime ideal. Let a,b € Z. Suppose ab € 2Z. Then
aorbiseven,ie. a € 2Z or b € 2Z. Therefore, 2Z is prime.

Alternate Proof: ab € 2Z < dn € Z such that ab = 2n. Using prime factorization, there ex-
ist primes p1,...,p1,q1,...,9s suchthata = p;...pjand b = ¢q1...4s. Thus, p1...pig1...9s = 2n
and there exists i or j such that p; = 2 or g; = 2. Thus, a € 2Z or b € 2Z and 2Z is prime.

Theorem

Let R be a commutative ring with identity and let A C R be an ideal. Then R/ A is an integral
domain if and only if A is prime.

Proof

Suppose R/ A is an integral domain. Let a,b € R and suppose that ab € A. We must show
ae€ Aorb e A. We compute (a+ A)(b+ A) =ab+ A = A =0+ A, which is the additive
identity in R/ A. But R/ A is an integral domainsoa + A = Aor b+ A = A. Therefore,a € A
orb € A.

Conversely, supposed that A is prime and leta + A, b+ A € R/Asuchthat (a+ A)(b+ A) =
ab+ A = A. Thenab € A. But Ais primesoa € Aorb € A. Thus,a+ A =0¢€ R/Aor
b+ A=0¢€ R/Aand R/A is an integral domain.

Theorem

Let R be a commutative ring with identity and let A be an ideal of R. Then R/ A is a field if
and only if A is maximal.
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Proof

Suppose R/ A is a field. Let B be an ideal of R that properly contains A, A C B C R. We want
to show that B = R. There exists b € B such that b ¢ A. Then b + A is a nonzero element
of R/A. But R/ A is a field, hence b + A must have a multiplicative inverse, i.e. there exists
¢ € Rsuch that (b+ A)(c+ A) = bc+ A =1+ A. Therefore, 1 —bc € A C B. Butbc € B
since B is anideal so (1 —bc) +bc=1€ B.Sincel € B, B=R.

Conversely, suppose that A is maximal. We want to show that R/ A is a field. Since R is
commutative and has an identity, R/ A is also commutative and has an identity. We want to
show that every nonzero element of R/A has a multiplicative inverse. Every nonzero ele-
ment of R/Aisoftheformb+ A, b € R — A. Choose and fix such an element b. Consider the
subset B C R such that

B={br+a:reRac A}

We want to show that B is an ideal of R properly containing A. Since
(br+a)— (br' +a')=b(r—7)+(a—a') €B

we know that B is a subgroup of (R, +). We also know that is it closed under multiplication
since

(br +a)(br' +a’) = brbr’ + bra’ + br'a+ aa’ = b(rbr’' +ra' +1'a) + (aa’) € B
so B is a subring. Also for any s € R,
s(br 4+ a) = sbr +sa = b(sr) + (sa)

Because A is an ideal, sa € A so B is an ideal of R. Also foranya € A,a = b0+a € B
and b = b1 +0 € B — A so B is an ideal that properly contains A. However, A is maximal
so B = R. Because R contains 1, there exists ¢ € R and a’ € A such that 1 = bc + 4’. If we
consider the coset of R/ A this element is in, we see that1 + A = bc +a’ + A. Sincea’ € A, we
can rewrite our equationas 1 + A = (b+ A)(c + A). Therefore, for any b+ A € R/ A, there
exists a multiplicative inverse and R/ A is a field.

In a commutative ring R with identity, every maximal ideal is prime.

Definition. A norm N on the integral domain R is a map of set N : R — N U {0}. If N(a) > 0,
Va € R, we say N is a positive norm.

Note. Some texts require for nonzero a,b € R, N(a) < N(ab). Also, it is not required that N(a +
b) < N(a) + N(b) or N(ab) < N(a)N(D).

Definition. The integral domain R is called a Euclidean domain if there is a norm N on R such
thatifa,b € R, b # 0, then 3g,r € R such thata = gb + r where r = 0 or N(r) < N(b). Here, q is
the quotient and r is the remainder.
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Definition. The Euclidean algorithm for two elements 4, b in a Euclidean domain R is a list of

divisions

a=qob+ro
b:q1r0+r1

ro = g2 +12

n—1 = n+1¥n

where 7, is the last nonzero remainder. Such an r,, exists as N(r1) > N(r2) > ... > N(r,) > 0isa
decreasing sequence of nonnegative integers.

If K is a field, then K[x] is a Euclidean domain with norm N(f(x)) = deg(f(x)). The
division algorithm is polynomial long divison. Let f,¢ € Zs[x], f = 3x* + x®> + 2x? 4+ 1, and
¢ = x? +4x + 2. Then we have 3x* + x3 +2x2 + 1 = (3x% + 4x) (x? + 4x +2) + (2x + 1).

Gaussian integers Z[i| = {a +bi: a,b € Z}, ii = —1, with norm N(a + bi) = a® + b*.

Definition. Leta,b € R, b # 0. Then a is a multiple of b if a = gb for some q € R. We also say b
divides a or b is a divisor of 4, or b|a.

Definition. The greatest common divisor of a and b is a nonzero element d € R such that

1. d|a and d|b.
2. If c|a and c|b, then c|d.

Note. Suppose d|d’ and d’|d. Then d’ = gqd and d = q'd’. This becomes d = gq'qd or (1 —qq’)d = 0.
Since this is an integral domain, either d = 0 or g4 = 1, meaning ¢ and 4’ are units. Thus, GCDs
are unique only up to units.

If0#a,b e Rand (a,b) = (d), thend = ged(a, b).

Definition. An integral domain such that every ideal generated by two elements is principal is
called a Bezout domain.

Let R be an integral domain. If (d) = (d’) then there exists a unit u € R such that
d' = ud.

Let R be a Euclidean domain and 0 # a,b € R. Let d = r, be the last nonzero
remainder in the Euclidean algorithm. Then d = gcd(a,b) and (d) = (a,b).

If (d) = (a,b), then there exists x,y € R such that d = ax + by.
Consider R = Z. If ax + by = ¢, then ¢ € (d) so ¢ is a multiple of ged(a, ).

Every ideal in a Euclidean domain is principal.
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Proof. Let I C R be an ideal and R a Euclidean domain with norm N. If [ = {0}, then I = (0)
is principal. Otherwise, consider {N(a) : a # 0,a € I} C NU {0} as a subset of nonnegative
integers. This set has a least element. Let d # 0, d € I be an element of minimal norm. We show
(d) = I. First, d € I implies thatrd € [ forallr € Rso (d) C I. We show I C (d). Leta € I. Since
R is a Euclidean domain, there exists g and r such thata = qd +r, withr = 0 or N(r) < N(d). But
d has minimal norm so r = 0. Thus, a = gd and a € (d). Therefore, I = (d) and I is principal.

Definition. A principal ideal domain is an integral domain such that every ideal is principal.

Every Euclidean domain is a PID. This containment is proper, i.e. not every PID is a
Euclidean domain.

Z.is a PID. Every ideal is a subring, hence a subgroup, and hence is cyclic.
Let RbeaPID, I C R a nonzero ideal. If I is prime, then I is maximal.

Proof. Suppose I C | C R for some ideal J. We show I = Jor | = R. Since Ris a PID, I and |
are principal, so there exists a,b € R such that I = (a) and ] = (b). First, I C ], i.e. (a) C (b) so
a € (b) and there exists x € R such that a = bx. Thus, bx € (a) = I. But I is prime, hence b € (a)
orx € (a). If b € (a), then (b) C (a) and (a) = (b), i.e. I = ]J. If x € (a), there exists y € R such
that x = ay. Then x = ay = bxy = xby. Thus, x(by — 1) = 0. Since R is an integral domain, x = 0
orby—1=0.If x =0, then I = 0but I # 0by assumption. Thus, 1 = by and b is a unit. Thus,
(b) = R, i.e. ] = R. Therefore, I is maximal.

If R[x] is a PID, then R is a field.

Proof. Since R C R|x], R is also an integral domain. Note that R[x]/(x) = R so (x) is prime. Thus,
(x) is maximal since R[x] is a PID. Thus, R[x]/(x) is a field. But R[x]/(x) = R so R is a field.

Theorem (Ascending Chain Condition). In a PID, any strictly ascending chain of ideals is finite in
length, ie. 1 C I € ... must be finite.

Proof. Let I = U, € INI,. This is an ideal. We are in a PID, hence I is principal, i.e. there exists
b € Rsuch that I = (b). Thus, b € I = U, € INI,. So there exists k € IN such that b € I;. Thus,
L,L,..., It C Iyand Iy, q C I. Thus our chain is finite.

Definition. Let R be an integral domain.

1. Letr € R, v # 0, and r be not a unit. We say r is irreducible in R if » = ab implies a or b is a
unit in R. Otherwise, r is reducible.

2. Anelement 0 # p € R is called prime if (p) is a prime ideal of R, i.e. p is not a unit and p|ab
implies p|a or p|b.

3. a and b are associate in R if there exists a unit u € R such that a = ub.
In an integral domain, prime elements are irreducible.

Proof. Let p € R and (p) be prime. Suppose p = ab where a,b € R. We want to show that a or b
is a unit. Note that p € (p) soab € (p) and eithera € (p) or b € (p). Without loss of generality,
let a € (p). Then there exists v € R such thata = pr. Thus, p = ab = prb so p(1 — rb) = 0. Since
p # 0 by assumption, 1 = rb since R is an integral domain so b is a unit.
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Note. Irreducible elements are not necessarily prime.

Consider 3 € Z[/—5]. Suppose we can factor 3. Let 3 = a(1+ by/=5)(1 + cy/-5).
Expanding gives a(1 — 5bc) + 5abcy/—5 so abc = 0 and a — 5abc = 3. Thus a = 3 and bc = 0.
This means that 1 = (1 + bv/—5)(1 + c¢y/—5) = 1 — 5bc + bcy/—5 and 5bc = bey/—5 so 3 is not
irreducible. However, note that 3|(1 ++/—5)(1 — v/—5). Another way to see this is by using norms
where N(a + by/—5) = a? +5b> and N(3) =9 = f2 + 5¢°.

In a PID, a nonzero element is prime if and only if it is irreducible.

Proof. The forward direction is trivial so we prove the reverse direction. Let p € R be irreducible.
We want to show that (p) is prime. But in a PID, maximal ideals are prime so we show that (p) is
maximal. Suppose (p) C M C R. Since R is a PID, there exists m € R such that M = (m). This
means that p € (m) and there exists r € R such that p = mr. But p is irreducible so m or r is a unit
in R. Thus, (m) = Ror (m) = (p) so (p) is maximal and therefore prime.

Definition. A unique factorization domain is an integral domain R such that for a nonzero nonunit

r,
1. There exists irreducible elements py, ..., p, € Rsuch thatr = p1ps...px.

2. Ifr = q1g2.. .. qm for irreducible g;, then m = n and there exists o € S, such that p; and q,(;)
are associate. The p; are not necessarily distinct.

The following are examples and non-examples of UFDs.
1. Fields are UFDs.
2. If Ris a UFD, then R|[x] is a UFD.
3. Z|2i] isnot a UFD. Note that4 =2 -2 = (2i)(—2i) and i ¢ Z[2i] = {a+b2i:a,b € Z}.
PIDs are UFDs.

Proof. Let r € R be a nonzero nonunit. If 7 is irreducible then we are done. Otherwise, r = r{75.
If ; is irreducible, we are done. Otherwise, r = 111715 .... We then have (r) C (r1) C (r11) C ...
This is an ascending chain of ideals in a PID. Thus, there exists n € N such that I,, = I, for m > n.
Thenr = ry...71._1. Uniqueness can be proved by induction on 7.

Corollary (Fundamental Theorem of Arithmetic). Z is a UFD.

Note. There is a chain of proper containment of types of rings as follows.

tield C Euclidean domain: Z
C principal ideal domain: Z[(1 + v/—19) /2]
C unique factorization domain: Z|x]
C integral domain: Z[v/—5]

C commutative ring with 1: Zg
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