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Abstract Algebra Notes

Definition. A map f : A → B is a subset f ⊂ A× B such that for all a ∈ A, there exists a b ∈ B
such that b is unique with (a, b) ∈ f .

Definition. We write f (a) = b if (a, b) ∈ f . A is the domain of f and B is the codomain.

Definition. A binary operation on A is a map ? : A × A → A such that ?(a1, a2) = a1 ? a2 for
a1, a2 ∈ A.

Definition. A binary operation ? is associative on A if for all a, b, c ∈ A, a ? (b ? c) = (a ? b) ? c.

Definition. An element e ∈ A is an identity element of ? if for each a ∈ A, e ? a = a ? e = a.

Definition. An element a ∈ A has an inverse under ? if there exists a b ∈ A such that a ? b =

b ? a = e.

Definition. A set A with an associative binary operation ? is a group if A has an identity element
under ? and every a ∈ A has an inverse.

Definition

A group is a pair (G, ?) where G is a set and ? is a binary operation on G such that

1. For all a, b, c ∈ A, a ? (b ? c) = (a ? b) ? c.

2. There exists an e ∈ G such that a ? e = e ? a = a for all a ∈ G.

3. For all a ∈ G, there exists a b ∈ G such that a ? b = b ? a = e.

Definition. A group (G, ?) is abelian or commutative if for all g, h ∈ G, g ? h = h ? g.

Theorem

Let (G, ?) be a group.

1. e is unique.

2. g−1 is unique.

3. ∀g ∈ G,
(

g−1)−1
= g.

4. ∀g, h ∈ G, (g ? h)−1 = h−1 ? g−1.
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Proof

We may prove each part separately.

1. Suppose e, e′ are identity elements. Then for all a ∈ G,

a ? e = e ? a = a (i)

a ? e′ = e′ ? a = a (ii)

By (i), e′ = e ? e′ and by (ii), e = e ? e′. Therefore, e = e′.

2. Supposed a ? b = b ? a = e, then

b = b ? e

= b ? (a ? a−1)

= (b ? a) ? a−1

= e ? a−1

= a−1

Thus, b = a−1.

3. g−1 ?
(

g−1)−1
= e = g−1 ? g. By (ii), g =

(
g−1)−1.

4. Consider (a ? b) ? (b−1 ? a−1).

(a ? b) ? (b−1 ? a−1) = a ? (b ? b−1) ? a−1

= a ? e ? a−1

= a ? a−1

= e

Thus, (b−1 ? a−1) = (a ? b)−1.

Definition. Let [n] = {1, 2, . . . , n}. The symmetric group denoted Sn of degree n is the set of all
bijections on [n] under the operation of composition.

Sn = {σ : [n]→ [n] | σ is a bijection}

Definition. The order of (G, ?) is the number of elements in G denoted |G|.

Definition. Let n ≥ 2. The dihedral group of index n is the group of all symmetries of a regular
polygon Pn with n vertices in the Euclidean plane.

Symmetries of Pn consist of rotations and reflections.

Choose a vertex v. Let L0 be the line from the center of Pn through v. Let Lk be L0 rotated by πk
n

for 1 ≤ k ≤ n. Let σk be a reflection about Lk. Let ρk be a rotation about 2πk
n , 1 ≤ k ≤ n.
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Definition. A subset S ⊆ G of a group (G, ?) is a set of generators, denoted 〈S〉 = G, if and only
if every element of G can be written as a finite product of elements of S and their inverses.

Definition. Any equation satisfied by generators is called a relation.

Definition. A presentation of G, denoted 〈S | R〉, is a set of generators of G and relations such
that any other relation can be derived by those given.

Example.
D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉

Definition. The cycles σ = (σ1 σ2 . . . σn) and τ = (τ1 τ2 . . . τn) are disjoint if σi 6= τj for 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

Definition. A cycle of length 2 is called a transposition.

Definition. An expression of the form (a1 a2 . . . am) is called a cycle of length m or an m-cycle.

Proposition. Let α = (a1 a2 . . . am) and β = (b1 b2 . . . bn). If ai 6= bj for any i, j, then αβ = βα.

Proposition. Every permutation can be written as a product of disjoint cycles.

Proposition. A cycle of length n has order n.

Proposition. Let α1, α2, . . . , αn be disjoint cycles. Then,

|α1α2 . . . αn| = lcm(|α1|, |α2|, . . . , |αn|)

Proposition. Every permutation is Sn is a product of 2-cycles (which are not necessarily disjoint).

Proposition. If α = β1β2 . . . βr = γ1γ2 . . . γs where βi, γj are transpositions, then r and s have the
same parity.

Definition. If r and s are both odd, α is called an odd permutation. If r and s are both even, α is
called an even permutation.

Definition. The set of even permutations in Sn form a group called the alternating group, denoted
An.

Note. |An| = n!
2 for n > 1.

Definition

Let (G, ?) and (G′, ∗) be groups. A map of sets ϕ : G → G′ is a group homomorphism if for
all a, b ∈ G,

ϕ(a ? b) = ϕ(a) ∗ ϕ(b)

Example. The following are two very simple examples of homomorphisms.

Trivial Homomorphism
ϕ : G → G′, ϕ(g) = e, ∀g ∈ G

Identity Homomorphism
ϕ : G → G′, ϕ(g) = g, ∀g ∈ G
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Definition. If ϕ : G → G′ is a homomorphism, the domain of ϕ is Dom(ϕ) = G, the codomain of
ϕ is Codom(ϕ) = G′, the range or image of ϕ is ϕ(G) = {ϕ(g) : g ∈ G} ⊆ G′ denoted Range(ϕ)

or im ϕ.

Definition

A homomorphism which is bijective is called an isomorphism.

ϕ : G → G′ is an isomorphism if and only if there exists ψ : G′ → G such that ψ is a homo-
morphism and ϕ ◦ ψ = 1G′ , ψ ◦ ϕ = 1G, i.e. ψ is an inverse homomorphism to ϕ. We say G is
isomorphic to G′ by G ∼= G′ or φ : G ∼−→ G′.

Definition

Let (G, ?) be a group. A subset H ⊆ G is a subgroup if (H, ∗) is also a group.

If H 6= ∅ and H ⊆ G, H ≤ G or H is a subgroup of G if and only if

1. H is closed under ? (∀h1, h2 ∈ H, h1 ? h2 ∈ H).

2. H is closed under inverses (h ∈ H ⇒ h−1 ∈ H).

Note. The following is notation for arbitrary and abelian groups.

x ? y→ xy for arbitrary G, x + y for abelian G
e→ 1 for arbitrary G, 0 for abelian G

For an arbitrary subset A ⊆ G, and g ∈ G,

gA = {ga : a ∈ A} Ag = {ag : a ∈ A} gAg−1 = {gag−1 : a ∈ A}

Theorem (Subgroup Criterion)

Let ∅ 6= H ⊆ G, H ≤ G if and only if ∀x, y ∈ H, xy−1 ∈ H.

Definition. Let A ⊆ G be any subset. The centralizer of A in G is CG(A) = {g ∈ G : gag−1 = a}
and it is the set of elements in G which commute with all elements of A.

Proposition. CG(A) ≤ G

Proof. First we show that the centralizer is not empty. 1a = a1 = a, ∀a ∈ A ⇒ 1 ∈ CG(A)

⇒ CG(A) 6= 0 so the centralizer of A is not empty. Let x, y ∈ CG(A). We want to show that
xy−1 ∈ CG(A) or that xy−1 ∈ CG(A). We do this by showing that

(
xy−1) a

(
xy−1)−1

= a.(
xy−1

)
a
(

xy−1
)−1

= xy−1ayx−1

= x
(

y−1ay
)

x−1

= xax−1 (y ∈ CG(A))

= a (x ∈ CG(A))

Since this subset satisfies the Subgroup Criterion, the centralizer CG(A) is a subgroup of G.
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Definition. The center of a group G is denoted Z(G) = {g ∈ G : gx = xg, ∀x ∈ G}. Z(G) =

CG(G) ≤ G. Z(G) is the set of elements of G which commute with all elements in G. If G is
abelian, Z(G) = G.

Definition. The normalizer of A in G is NG(A) = {g ∈ G : gAg−1 = A} or {g ∈ G : gag−1 = a′ ∈
A}.

Proposition. CG(A) ≤ NG(A) ≤ G

Definition. A group action of a group G on a set A is a map G × A → A such that (g1g2) · a =

g1 · (g2 · a), ∀g1, g2 ∈ G, ∀a ∈ A and 1 · a = a, ∀a ∈ A. It is denoted G 	 A.

Definition. Suppose G 	 A, the stabilizer of a ∈ A in G is Ga = {g ∈ G : g · a = a}. Ga ≤ G.

Definition

An equivalence relation E on a set S is a subset E ⊆ S× S which is reflexive, symmetric, and
transitive. We write (a, b) ∈ E ⇔ a E b or a ∼ b.

1. a ∼ a

2. a ∼ b⇔ b ∼ a

3. a ∼ b, b ∼ c⇒ a ∼ c

Definition. The equivalence class of a ∈ S is [a] = {b ∈ S : a ∼ b}

Definition. The quotient set of S under ∼ is S/∼= {[a] : a ∈ S}.

Example. Q = {(a, b) ∈ Z×Z : b 6= 0}/∼, (a, b) ∼ (c, d)⇒ ad = bc.

Definition. The quotient set comes equipped with the projection map π : S → S/∼ where a 7→
[a] = π(a). This map is surjective by definition.

Definition

A group G′ is a quotient group of a group G if

1. G′ = G/∼, G′ is the quotient set of G under an equivalence relation ∼.

2. The projection map π : G → G′ = G/∼ is a group homomorphism.

Definition. Let ϕ : G → G′ be a homomorphism and let g′ ∈ G′. The fiber over g′ is ϕ−1(g′) =

{g ∈ G : ϕ(g) = g′}.

Proposition

All quotient groups come from subgroups.
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Proof

Let ϕ : G → G′ be a homomorphism, then ϕ induces an equivalence relation on G. Let x ∼
y⇔ ϕ(x) = ϕ(y). But ϕ is a group homomorphism, so ϕ(x) = ϕ(y)⇔ ϕ(x)ϕ(y)−1 = 1G′ ⇔
ϕ(x)ϕ(y−1) = 1 ⇔ ϕ(xy−1) = 1. So x ∼ y ⇔ ϕ(xy−1) = 1. Let K = {g ∈ G : ϕ(g) = 1}.
Then x ∼ y⇔ xy−1 ∈ K. Recall K = ker ϕ ≤ G.

Let G′ be a quotient group of G. Then x ∼ y ⇔ [x] = [y] ⇔ π(x) = π(y) where π : G → G′

is the projection. But π(x) = π(y)⇔ xy−1 ∈ ker ϕ.

Definition. The right coset of a subgroup H of a group G by the element x ∈ G is Hx = {hx : h ∈
H}. The left coset, denoted xH is denoted similarly.

Proposition. Let ϕ : G → G′ be a homomorphism and K = ker ϕ. Then xKx−1 ⊆ K, ∀x ∈ G.

Proof. We must show ϕ(xkx−1) = 1G′ for x ∈ G, k ∈ K. Then, ϕ(xkx−1) = ϕ(x)ϕ(k)ϕ(x−1) =

ϕ(x)ϕ(x)−1 = 1G′ .

Definition

The subgroup N ≤ G is normal if xNx−1 ⊆ N for all x ∈ G. It is denoted NE G.

Proposition. ker ϕE G for any homomorphism ϕ : G → G′.

Theorem

Let N ≤ G. Then the following are equivalent.

1. NE G (xNx−1 ⊆ N, ∀x ∈ G)

2. xNx−1 = N

3. xN = Nx

4. ∀x, y ∈ G, xy−1 ∈ N ⇔ y−1x ∈ N
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Proof

(1) ⇒ (2) Assume ∀x ∈ G, xNx−1 ⊆ N. We want to show xNx−1 = N. We do this by
showing N ⊆ xNx−1. Let x ∈ G, n0 ∈ N. We show n0 ∈ xNx−1. Note that x ∈ G ⇒ x−1 ∈ G.
Thus, x−1N

(
x−1)−1 ⊆ N since N E G. Thus there exists n such that x−1nx = n1 ∈ N.

n0 = x
(
x−1n0x

)
x−1 = xn1x−1 ∈ xNx−1.

(3)⇒ (4) Assume ∀x ∈ G, xN = Nx. Let x, y ∈ G. We want to show xy−1 ∈ N ⇔ y−1x ∈ N.
So we must show this is true in both directions. Suppose xy−1 ∈ N. Then there exists an
n1 ∈ N such that xy−1 = n1. Thus, x = n1y ∈ Ny = yN by assumption. So x ∈ yN. Thus
there exists n2 ∈ N such that x = yn2 ⇒ y−1x = n2 ∈ N. Thus, xy−1 ∈ N ⇒ y−1x ∈ N.
Similarly, y−1x ∈ N ⇒ xy−1 ∈ N.

Proposition. Let H ≤ G. Then, x ∼ y⇔ y−1x ∈ H is an equivalence relation on G.

Proof. We want to show ∼ is reflexive, symmetric, and transitive.

1. x ∼ x: x−1x = 1 ∈ H

2. x ∼ y⇒ y ∼ x: x ∼ y⇔ y−1x ∈ H ⇒ x−1y ∈ H ⇔ y ∼ x

3. x ∼ y, y ∼ z⇒ x ∼ z: y−1x ∈ H, z−1y ∈ H ⇒ (z−1y)(y−1x) = z−1x ∈ H ⇔ x ∼ z

Thus, ∼ is an equivalence relation on G.

Any subgroup gives an equivalence relation.

Definition. An equivalence relation on a set S is the same as a partition of S. P = {A1, A2, . . .},
Ai ⊆ S such that S ∪i∈N Ai, Ai ∩ Aj = ∅, i 6= j. a ∼ b⇔ a, b ∈ Ai.

Proposition. For H ≤ G, x ∼ y⇔ y−1x ∈ H ⇔ xH = yH (Hx = Hy).

Proof. Suppose y−1x ∈ H. We want to show that xH = yH or xH ⊆ yH and yH ⊆ xH. y−1x ∈ H
implies that there exists a h1 ∈ H such that y−1x = h1. Thus, x = yh1 ⇒ x ∈ yH. y−1x ∈ H ⇔
x−1y ∈ H which implies that there exists a h2 ∈ H such that x−1y = h2 ⇒ y = xh2 ∈ xH.

Note. [x] = xH.

Proposition. For N ≤ G, let G/N = {xN : x ∈ G}. Define xN · yN = (xy)N. Then G/N is a
group if and only if NE G.

G/N = G/∼ (x ∼ y⇔ xN = yN)

Every quotient group is G/N for some N.

π : G → G/∼, ker πE G, G/∼ = G/ ker π.

Proposition. If H ≤ G and G is abelian, then HE G.
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If G is a group and ∼ is an equivalence relation on G, then the quotient set G/∼ is a quotient
group if and only if the projection map π : G → G/∼, π(x) = [x] is a homomorphism.

If NE G, then G/N is a quotient group, where G/N = {xN : x ∈ G} and xN · yN = (xy)N.

These notions of quotient groups are equivalent.

Proposition. If ∼ is an equivalence relation and G/∼ is a quotient group, then there exists a
homomorphism π : G → G/∼ and ker πE G.

Proof. x ∼ y⇔ π(x) = π(y)⇔ π(y−1x) = 1⇔ y−1x ∈ ker π ⇔ x ker π = y ker π.

If N E G, define x ∼ y ⇔ xN = yN ⇔ y−1x ∈ N. Then, G/∼= G/N, [x] = xN, π : G → G/N,
π(x) = xN, ker π = N.

Proposition. Every subgroup of an abelian group is a normal subgroup.

Definition. Sn ⊆ Rn+1, Sn = {(x1, x2, . . . , xn+1) : ∑ x2
i = 1}

For H ≤ G, the relation x ∼ y ⇔ xH = yH ⇔ y−1x ∈ H is an equivalence relation and thus
partitions G into equivalence classes.

G =
⋃

x∈G

[x], [x] ∩ [y] = ∅, [x] 6= [y]

G =
⋃

x∈G

xH, xH ∩ yH = ∅, x � y

Proposition. Let H ≤ G. The number of right cosets of H equals the number of left cosets of H.

Proof. Let R = {Hx : x ∈ G} and L = {xH : x ∈ G}. We construct a bijection L → R. Define
f : R→ L by f (Hx) = x−1H, and define g : L→ R by g(xH) = Hx−1. Then f and g are mutually
inverse. Hence R↔ L.

Definition. The number of distinct left cosets of H in G is called the index of H in G, and is
denoted [G : H].

Theorem (Lagrange’s Theorem)

If H is a subgroup of G, |G| = |H|[G : H].

Corollary. In a finite group, the order of every element divides the order of the group.

Corollary. A group of prime order is cyclic.

Corollary. Let G be a finite group and let a ∈ G. Then, a|G| = 1.

Let ϕ : G → G′ be a homomorphism. How far is ϕ from an isomorphism? How can ϕ fail to be an
isomorphism?

1. ϕ could fail to be injective. (ker ϕ 6= {1})

2. ϕ could fail to be surjective.
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Theorem (First Isomorphism Theorem)

Let ϕ : G → G′ be a homomorphism. Then ker ϕE G, im ϕ ≤ G′ and

G/ ker ϕ ∼= im ϕ

Proposition. There exists an isomorphism θ : G/ ker ϕ→ im ϕ such that

G G′

G/ ker ϕ im ϕ

ϕ

π ι

θ

The curved arrow in the middle means the diagram is commutative, i.e. ϕ = ι · θ · π. The curved
arrow means it is injective.

Proof. Define θ : G/ ker ϕ→ im ϕ by θ(x ker ϕ) = ϕ(x).
First we show that θ is well-defined. Suppose x ker ϕ = y ker ϕ. Then,

x ker ϕ = y ker ϕ⇔ y−1x ker ϕ = ker ϕ

⇔ y−1x ∈ ker ϕ

⇔ ϕ(y−1x) = 1

⇔ ϕ(y)−1ϕ(x) = 1

⇔ ϕ(x) = ϕ(y)

⇔ θ(x ker ϕ) = θ(y ker ϕ)

Thus, θ is well-defined.

Then, we show that θ is a homomorphism. Let K = ker ϕ.

θ(xKyK) = θ(xyK)

= ϕ(xy)

= ϕ(x)ϕ(y)

= θ(xK)θ(yK)

Thus, θ is a homomorphism.

Then, we show that θ is injective.

θ(xK) = θ(yK)⇔ ϕ(x) = ϕ(y)

⇔ ϕ(y)−1ϕ(x) = 1

⇔ ϕ(y−1x) = 1

⇔ y−1x ∈ K

⇔ xK = yK
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Thus, θ is injective.

Then, we show that θ is surjective. Let y ∈ im ϕ. There exists xK ∈ G/K such that θ(xK) = y. We
know there exists an x ∈ G such that ϕ(x) = y. θ(xK) = ϕ(x) = y. Thus, θ is surjective and θ is
an isomorphism.

Proposition. Let a ∈ G. If |a| = ∞, then 〈a〉 ∼= (Z,+). If |a| = n, then 〈a〉 = Zn = Z/nZ.

Proof. Consider Z
π−→ G defined by π(k) = ak.

Definition. Let (A, ?) and (B, ∗) be groups. The direct product or direct sum of A and B is A⊕
B = {(a, b) : a ∈ A, b ∈ B} where (a1, b1) · (a2, b2) = (a1 ? a2, b1 ∗ b2) ∈ A⊕ B.

Definition. In a group G, define a ∼ b ⇔ ∃x ∈ G such that b = xax−1. This is an equivalence
relation and a and b are conjugates.

Definition. For any x ∈ G, the inner automorphism of G induced by x is Tx : G → G defined by
Tx(g) = xgx−1.

Definition. The set of all inner automorphisms of G is a group, called the inner automorphism group,
and is denoted Inn(G) = {Tx : G → G | x ∈ G}.

Proposition. G/Z(G) ∼= Inn(G)

Proof. Consider ψ : G → Inn(G) defined by x 7→ Tx. Then, ψ is surjective, i.e. im ψ = Inn(G). We
then determine the kernel of the homomorphism.

ker ψ = {x ∈ G : ψ(x) = 1G}
= {x ∈ G : Tx(g) = g, ∀g ∈ G}
= {x ∈ G : xgx−1 = g, ∀g ∈ G}
= {x ∈ G : xg = gx, ∀g ∈ G}
= Z(G)

By the first isomorphism theorem, G/Z(G) ∼= Inn(G).

Theorem (Third Isomorphism Theorem)

Let G be a group. Let AE G, BE G. If A ⊆ B, then AE B, B/AE G/A, and

(G/A)/(B/A) ∼= (G/B)
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Proof

First we establish AE B. A ≤ B because A ≤ G and A ⊆ B.

AE B⇔ bAb−1 ⊆ A, ∀b ∈ B

AE G ⇔ xAx−1 ⊆ A, ∀x ∈ G

But B ⊆ G so b ∈ G. Thus, bAb−1 ⊆ A, ∀b ∈ B and AE B. Thus, AE B and we may construct
B/A.

We first show B/A ≤ G/A. It is closed under multiplication since (b1A)(b2A) = (b1b2)A ∈
B/A because B is a group. It is also closed under inverses since (bA)−1 = b−1A ∈ B/A.

We then show B/AE G/A by showing x(B/A)x−1 ⊆ B/A, ∀x ∈ G/A. Let x ∈ G/A⇔ yA,
y ∈ G. We want to show (yA)(B/A)(yA)−1 ⊆ B/A. Let z ∈ (yA)(B/A)(yA)−1. Then, there
exist a1, a2 ∈ A, b1 ∈ B such that

z = (ya1)(b1A)(y−1a2)

= y(a1b1)Ay−1a2

= y(a1b1)y−1Aa2

We know a2 ∈ A ⇒ Aa2 = A and A ⊆ B ⇒ a1 ∈ A ⊆ B ⇒ a1 ∈ A ⇒ a1b1 ∈ B. Thus, there
exists b2 ∈ B such that a1b1 = b2. We substitute these in to get

z = yb2y−1A

We know BE G ⇒ yBy−1 ⊆ B. Thus, there exists a b3 ∈ B such that yb2y−1 = b3 ∈ B. We
then get z = b3A. Since z = b3A ∈ B/A, B/AE G/A.

Now we prove (G/A)/(B/A) ∼= (G/B). We define the homomorphism ω : G/A → G/B
such that ω(xA) = xB. We show that ω is well-defined. If xA = yA, then

xA = yA⇔ y−1x ∈ A ⊆ B

⇒ y−1x ∈ B

⇔ xB = yB

⇔ ω(xA) = ω(yA)

We may then determine the kernel and image of the homomorphism.

im ω = {xB : x ∈ G} = G/B

ker ω = {xA : ω(xA) = B} = {xA : xB = B} = {xA : x ∈ B} = B/A

By the first isomorphism theorem, (G/A)/ ker ω ∼= im ω so (G/A)/(B/A) ∼= (G/B).

Proposition. There is an isomorphism θ : (G/A)/(B/A) → G/B such that this diagram com-
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mutes.

G/A

G (G/A)/(B/A)

G/B

π

σ

ω

ρ

θ

Theorem (Second Isomorphism Theorem)

Let G be a group, A ≤ G, and NE G. Then AN ≤ G, NE AN, and A ∩ NE A. Also,

(AN)/N ∼= A/(A ∩ N)

Proof

Let ϕ : A → AN/N such that a 7→ aN. Then by the first isomorphism theorem, (AN)/N ∼=
A/(A ∩ N).

Example. We look at an example of the third isomorphism theorem. Let G = Z, A = 12Z, and
B = 4Z. We observe that A E B E G so the conditions for the third isomorphism theorem are
satisfied.

G/A = Z/12Z = {0, 1, . . . , 11}(mod 12)

B/A = 4Z/12Z = {0, 4, 8}(mod 12)

(G/A)/(B/A) = {0, 1, 2, 3}(mod 4) = Z/4Z

(Z/12Z)/(4Z/12Z) ∼= Z/4Z

Example. We look at an example of the second isomorphism theorem. Let G = Z, N = 12Z, and
A = 8Z.

A ∩ N = {0,±24,±48, . . .} = 24Z

AN = {0,±4,±8, . . .} = 4Z

AN/A = 4Z/12Z = {0, 4, 8}(mod 12)

A/(A ∩ N) = 8Z/24Z = {0, 8, 16}(mod 24)

AN/N ∼= Z/3Z ∼= A/(A ∩ N)
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Definition

A ring (R,+, ·) is a set together with two binary operations, called addition and multiplication
respectively, satisfying the following three axioms.

(a) The set (R,+) together with addition is an abelian group.

(b) The binary operation · is associative on R.

(c) The distributive law holds in R; for all a, b, c ∈ R,

(a + b) · c = (a · c) + (b · c)

a · (b + c) = (a · b) + (a · c)

Definition. The ring R is commutative if multiplication is commutative.

Definition. The ring R has an identity, or unity or contains a 1 if there is an element 1 ∈ R such
that for all a ∈ R, 1 · a = a · 1 = a.

Note. By abuse of notation, multiplication ·may be denoted by simple juxtaposition, i.e. a · b = ab.

Note. For a ring with 1, the condition of commutativity under addition is redundant. Note that
for any a, b ∈ R,

(1 + 1)(a + b) = 1(a + b) + 1(a + b) = a + b + a + b

(1 + 1)(a + b) = (1 + 1)a + (1 + 1)b = a + a + b + b

Therefore, a + b + a + b = a + a + b + b and therefore a + b = b + a. Thus R is abelian.

Definition. A ring with identity is a division ring if every nonzero element has a multiplicative
inverse.

Definition

A field is a commutative division ring.

Example. The following are two very simple examples of rings.

The Zero Ring
Let R = {0}. Then R is a ring and is called the zero ring.
Trivial Rings
For any abelian group (G,+), consider the ring (G,+, ·), where multiplication is given by a · b = 0
for any a, b ∈ G.

Proposition. Let R be a ring, and a, b ∈ R.

(a) 0a = a0 = 0

(b) (−a)b = a(−b) = −(ab), where −(a) is the additive inverse of a.
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(c) (−a)(−b) = ab

(d) If R has identity 1, then it is unique and −a = (−1)a.

Definition. A nonzero element element a of a ring R is a zero divisor if there is a nonzero 0 6= b ∈
R such that ab = 0 or ba = 0.

Definition. Let R be a ring with identity. An element a of R is a unit if it has a multiplicative
inverse, i.e. there is some b ∈ R such that ab = ba = 1. The set of units of R is denoted R×.

Definition

An integral domain is a commutative ring with identity which has no zero divisors.

Proposition. Let R be an integral domain, and let a, b, c ∈ R. If ab = ac, then a = 0 or b = c.

Definition. Let R be a commutative ring with 1. For any a0, a1, . . . , an ∈ R, the expression

p(x) = a0 + a1x + a2x2 + . . . + anxn

is a polynomial in R with coefficients a0, a1, . . . , an. If an 6= 0, then p(x) has degree n. The set of all
polynomials in R is denoted R[x] or R adjoin x. R[x] is a ring (called the ring of polynomials in R
in one variable) under ”usual” addition and multiplication. Let p(x) = a0 + a1x + . . . + anxn and
q(x) = b0 + b1x + . . . + bmxm, and without loss of generality n > m. Then,

p(x) + q(x) = (a0 + b0) + (a1 + b1)x + . . . + (an + bn)xn

where bk = 0 for k > m and

p(x)q(x) =
m+n

∑
k=0

( ∑
i+j=k

aibj)xk

Note. Polynomials are not determined by their values

The following is a formal construction of the ring of polynomials in R.

Let R be a commutative ring with 1. R[x] is the set of all tuples p(x) = (a0, a1, . . . , an) ∈ R∞ =

∏i∈N R = ⊕i∈NR, i.e. ak ∈ R where ∃n ∈ N such that ak = 0 for k > n. The smallest such n is the
degree of p(x). If p = (a0, a1, . . . , an, 0, . . .) and q = (b0, b1, . . . , bm, 0, . . .), then

p + q = (a0 + b0, a1 + b1, . . . , an + bn, 0, . . .)

pq = (c0, c1, . . . , ck, 0, . . .), ck = ∑
i+j=k

aibj

Definition. Let R be any ring Mn(R) = {n× n matrices with entries in R}, A = (aij), B = (bij),
(A + B)ij = aij + bij, A · B = C, cij = ∑n

k=1 aikbkj. This is the ring of n× n matrices over R or with
entries in R. If R has 1, then

I =

1 . . . 0
...

. . .
...

0 . . . 1

 = 1 ∈ Mn(R)
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Definition. GLn(R) is the group of units of Mn(R) and is called the general linear group.

Definition. Let R be commutative with 1. Let G = {g1, . . . , gn} be a finite group. The group ring
RG of G with coefficients in R is the set of all formal sums

a1g1 + a2g2 + . . . + angn

where ai ∈ R,

(a1g1 + . . . + angn) + (b1g1 + . . . + bngn) = (a1 + b1)g1 + . . . + (an + bn)gn

(a1g1 + . . . + angn) · (b1g1 + . . . + bngn) = c1g1 + . . . + cngn, where ck = ∑
gi gj=gk

aibj

Note. 1 · gi = gi, ai · 1 = ai, (aigi)(bjgj) = (aibj)(gigj)

Example. G = S4, R = Z.

x = 2(1 2) + (2 3) + 7(1 2 4) y = 3(1) + 2(2 3)

x + y = 3(1) + 2(1 2) + 3(2 3) + 7(1 2 4)

xy = 6(1 2) + 4(1 2)(2 3) + 3(2 3) + 2(1) + 21(1 2 4) + 14(1 2 4)(2 3)

= 2(1) + 6(1 2) + 3(2 3) + 4(1 2 3) + 21(1 2 4) + 14(1 2 3 4)

Definition

A subring S of a ring (R,+, ·) is a subgroup S ≤ (R,+) which is closed under the multiplica-
tive structure of R.

Proposition. A subset S of the ring R is a subring if and only if S is closed under subtraction and
multiplication.

Proof. This follows immediately from the fact that a subset H of an abelian group G is a subgroup
if and only if H is closed under subtraction.

Definition. The center of a ring A is the set of elements a ∈ A such that ax = xa for all x ∈ A. The
center of A is a subring of A.

Definition

Let R and S be rings. A ring homomorphism is a map of sets ϕ : R → S such that for all
a, b ∈ R,

ϕ(a + b) = ϕ(a) + ϕ(b)

ϕ(ab) = ϕ(a)ϕ(b)

Definition. The kernel of the homomorphism ϕ : R→ S is given by

ker ϕ = {r ∈ R : ϕ(r) = 0 ∈ S}

Definition. A ring isomorphism is a bijective homomorphism.
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Definition

A subring I of R is a left ideal of R if I is closed under left multiplication by elements from R,
i.e. rI ⊆ I for all r ∈ R. Similarly, I is a right ideal of R if I is closed under right multiplication
by elements of R, i.e. Ir ⊆ I for all r ∈ R. A subring which is both a left and right ideal is
called a two sided ideal, or simply ideal.

Definition

The quotient ring R/I of the ring R by the ideal I ⊆ R is the quotient group of cosets R/I
under the operations

(r + I) + (s + I) = (r + s) + I (r + I) · (s + I) = (r · s) + I

for all r, s ∈ R.

Proposition. For any ring R and ideal I, R/I is a ring.

Proposition. If I is any ideal of R, the map ϕ : R → R/I defined by r 7→ r + I is a surjective ring
homomorphism with kernel I.

Theorem (First Isomorphism Theorem for Rings). If ϕ : R → S is homomorphism of rings, then
ker ϕ is an ideal of R, im ϕ is a subring of S, and

R/ ker ϕ ∼= im ϕ

Theorem (Second Isomorphism Theorem for Rings). Let R be a ring, A a subring and B an ideal
of R. Then A + B = {a + b : a ∈ A, b ∈ B} is a subring of R, A ∩ B is an ideal of A and

(A + B)/B ∼= A/(A ∩ B)

Theorem (Third Isomorphism Theorem for Rings). Let I and J be ideals of the ring R such that
I ⊆ J. Then J/I is an ideal of R/I and

(R/I)(J/I) ∼= (R/J)

Theorem (Fourth Isomorphism Theorem for Rings). Let I be an ideal of R. The correspondence

A←→ A/I

is an inclusion preserving bijection between the subring A of R containing I and the set of subrings
of R/I. Further, a subring A containing I is an ideal of R if and only if A/I is an ideal of R/I.

Definition

Let A ⊆ R be a subset. Then the ideal generated by A is the smallest ideal of R containing A,
and is denoted (A).
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Note. In this context, ”smallest” means all other ideals containing A also contain (A). In other
words, A ⊆ J =⇒ (A) ⊆ J.

Proposition. (A) is the intersection of all ideal I containing A, or

(A) =
⋂

A⊆I

I

Proof. R is an ideal of itself containing A and the intersection of nonempty ideals is an ideal. By
definition the intersection contains A. Therefore,

⋂
A⊆I I is an ideal containing A. Since (A) is the

smallest ideal containing A, (A) ⊆ ⋂A⊆I I.

On the other hand, suppose x ∈ ⋂
A⊆I I. Then for any ideal I containing A, x ∈ I. But (A) is

an ideal containing A. Thus x ∈ (A). Therefore,
⋂

A⊆I I ⊆ (A). Thus, (A) =
⋂

A⊆I I.

Proposition. If R is commutative, then

(A) = RA = AR

where
RA = {r1a1 + r2a2 + . . . + rnan : ri ∈ R, ai ∈ A, n ∈ Z}

and AR is define similarly.

Definition. An ideal generated by a single element is called a principal ideal.

Definition. An ideal generated by a finite set is called a finitely generated ideal.

Definition. An ideal I of a ring R is proper if it is a proper subset, i.e. I 6= R and I ( R.

Definition. A proper ideal M of a ring R is maximal if whenever I is an ideal of R and M ⊆ I ⊆ R,
then M = I or M = R.

Example. Consider (x− 4) ∈ R[x].

(x− 4) = ({x− 4}) = { f (x)(x− 4) : f ∈ R[x]}

We claim (x − 4) is maximal in R[x]. Suppose (x − 4) ( I ⊆ R. We want to show I = R =

R[x]. There exists f (x) ∈ I with f (x) /∈ (x − 4). Recall polynomial long division. ∀ f (x), g(x) ∈
R[x], ∃q(x), r(x) ∈ R[x] such that

f (x) = q(x)g(x) + r(x), deg r(x) < deg g(x)

In our case, g(x) = (x− 4), with deg r(x) < 1. This implies that r(x) = r ∈ R so we can rewrite
our expression as

f (x) = q(x)(x− 4) + r

Since (x− 4) ( I, we know x− 4 ∈ I and q(x)(x− 4) ∈ I. Since I is a subring, f (x)− q(x)(x− 4) =
r ∈ I. Since f (x) /∈ (x− 4) and q(x)(x− 4) ∈ (x− 4), r 6= 0. Since 0 6= r ∈ R, r is a unit in R[x].
If r ∈ I is a unit, then I = R because r being a unit =⇒ u−1 ∈ R =⇒ u−1u ∈ I =⇒ 1 ∈ I =⇒
∀r ∈ R, r1 ∈ I =⇒ I = R. Therefore, I = R[x] and (x− 4) is maximal.
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Definition. A proper ideal P of a commutative ring R is prime if ab ∈ P implies a ∈ P or b ∈ P
for any a, b ∈ R.

Example. Consider 2Z ⊆ Z. We claim 2Z is a prime ideal. Let a, b ∈ Z. Suppose ab ∈ 2Z. Then
a or b is even, i.e. a ∈ 2Z or b ∈ 2Z. Therefore, 2Z is prime.

Alternate Proof: ab ∈ 2Z ⇔ ∃n ∈ Z such that ab = 2n. Using prime factorization, there ex-
ist primes p1, . . . , pl , q1, . . . , qs such that a = p1 . . . pl and b = q1 . . . qs. Thus, p1 . . . plq1 . . . qs = 2n
and there exists i or j such that pi = 2 or qj = 2. Thus, a ∈ 2Z or b ∈ 2Z and 2Z is prime.

Theorem

Let R be a commutative ring with identity and let A ⊆ R be an ideal. Then R/A is an integral
domain if and only if A is prime.

Proof

Suppose R/A is an integral domain. Let a, b ∈ R and suppose that ab ∈ A. We must show
a ∈ A or b ∈ A. We compute (a + A)(b + A) = ab + A = A = 0 + A, which is the additive
identity in R/A. But R/A is an integral domain so a + A = A or b + A = A. Therefore, a ∈ A
or b ∈ A.

Conversely, supposed that A is prime and let a + A, b + A ∈ R/A such that (a + A)(b + A) =

ab + A = A. Then ab ∈ A. But A is prime so a ∈ A or b ∈ A. Thus, a + A = 0 ∈ R/A or
b + A = 0 ∈ R/A and R/A is an integral domain.

Theorem

Let R be a commutative ring with identity and let A be an ideal of R. Then R/A is a field if
and only if A is maximal.
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Proof

Suppose R/A is a field. Let B be an ideal of R that properly contains A, A ( B ⊆ R. We want
to show that B = R. There exists b ∈ B such that b /∈ A. Then b + A is a nonzero element
of R/A. But R/A is a field, hence b + A must have a multiplicative inverse, i.e. there exists
c ∈ R such that (b + A)(c + A) = bc + A = 1 + A. Therefore, 1− bc ∈ A ( B. But bc ∈ B
since B is an ideal so (1− bc) + bc = 1 ∈ B. Since 1 ∈ B, B = R.

Conversely, suppose that A is maximal. We want to show that R/A is a field. Since R is
commutative and has an identity, R/A is also commutative and has an identity. We want to
show that every nonzero element of R/A has a multiplicative inverse. Every nonzero ele-
ment of R/A is of the form b + A, b ∈ R− A. Choose and fix such an element b. Consider the
subset B ⊆ R such that

B = {br + a : r ∈ R, a ∈ A}

We want to show that B is an ideal of R properly containing A. Since

(br + a)− (br′ + a′) = b(r− r′) + (a− a′) ∈ B

we know that B is a subgroup of (R,+). We also know that is it closed under multiplication
since

(br + a)(br′ + a′) = brbr′ + bra′ + br′a + aa′ = b(rbr′ + ra′ + r′a) + (aa′) ∈ B

so B is a subring. Also for any s ∈ R,

s(br + a) = sbr + sa = b(sr) + (sa)

Because A is an ideal, sa ∈ A so B is an ideal of R. Also for any a ∈ A, a = b0 + a ∈ B
and b = b1 + 0 ∈ B− A so B is an ideal that properly contains A. However, A is maximal
so B = R. Because R contains 1, there exists c ∈ R and a′ ∈ A such that 1 = bc + a′. If we
consider the coset of R/A this element is in, we see that 1+ A = bc + a′+ A. Since a′ ∈ A, we
can rewrite our equation as 1 + A = (b + A)(c + A). Therefore, for any b + A ∈ R/A, there
exists a multiplicative inverse and R/A is a field.

Proposition. In a commutative ring R with identity, every maximal ideal is prime.

Definition. A norm N on the integral domain R is a map of set N : R → N ∪ {0}. If N(a) > 0,
∀a ∈ R, we say N is a positive norm.

Note. Some texts require for nonzero a, b ∈ R, N(a) ≤ N(ab). Also, it is not required that N(a +
b) ≤ N(a) + N(b) or N(ab) ≤ N(a)N(b).

Definition. The integral domain R is called a Euclidean domain if there is a norm N on R such
that if a, b ∈ R, b 6= 0, then ∃q, r ∈ R such that a = qb + r where r = 0 or N(r) < N(b). Here, q is
the quotient and r is the remainder.
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Definition. The Euclidean algorithm for two elements a, b in a Euclidean domain R is a list of
divisions

a = q0b + r0

b = q1r0 + r1

r0 = q2r1 + r2

. . .

rn−1 = qn+1rn

where rn is the last nonzero remainder. Such an rn exists as N(r1) > N(r2) > . . . > N(rn) ≥ 0 is a
decreasing sequence of nonnegative integers.

Example. If K is a field, then K[x] is a Euclidean domain with norm N( f (x)) = deg( f (x)). The
division algorithm is polynomial long divison. Let f , g ∈ Z5[x], f = 3x4 + x3 + 2x2 + 1, and
g = x2 + 4x + 2. Then we have 3x4 + x3 + 2x2 + 1 = (3x2 + 4x)(x2 + 4x + 2) + (2x + 1).

Example. Gaussian integers Z[i] = {a + bi : a, b ∈ Z}, ii = −1, with norm N(a + bi) = a2 + b2.

Definition. Let a, b ∈ R, b 6= 0. Then a is a multiple of b if a = qb for some q ∈ R. We also say b
divides a or b is a divisor of a, or b|a.

Definition. The greatest common divisor of a and b is a nonzero element d ∈ R such that

1. d|a and d|b.

2. If c|a and c|b, then c|d.

Note. Suppose d|d′ and d′|d. Then d′ = qd and d = q′d′. This becomes d = q′qd or (1− qq′)d = 0.
Since this is an integral domain, either d = 0 or qq′ = 1, meaning q and q′ are units. Thus, GCDs
are unique only up to units.

Proposition. If 0 6= a, b ∈ R and (a, b) = (d), then d = gcd(a, b).

Definition. An integral domain such that every ideal generated by two elements is principal is
called a Bezout domain.

Proposition. Let R be an integral domain. If (d) = (d′) then there exists a unit u ∈ R such that
d′ = ud.

Proposition. Let R be a Euclidean domain and 0 6= a, b ∈ R. Let d = rn be the last nonzero
remainder in the Euclidean algorithm. Then d = gcd(a, b) and (d) = (a, b).

Proposition. If (d) = (a, b), then there exists x, y ∈ R such that d = ax + by.

Proposition. Consider R = Z. If ax + by = c, then c ∈ (d) so c is a multiple of gcd(a, b).

Proposition. Every ideal in a Euclidean domain is principal.
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Proof. Let I ⊆ R be an ideal and R a Euclidean domain with norm N. If I = {0}, then I = (0)
is principal. Otherwise, consider {N(a) : a 6= 0, a ∈ I} ⊆ N ∪ {0} as a subset of nonnegative
integers. This set has a least element. Let d 6= 0, d ∈ I be an element of minimal norm. We show
(d) = I. First, d ∈ I implies that rd ∈ I for all r ∈ R so (d) ⊆ I. We show I ⊆ (d). Let a ∈ I. Since
R is a Euclidean domain, there exists q and r such that a = qd + r, with r = 0 or N(r) < N(d). But
d has minimal norm so r = 0. Thus, a = qd and a ∈ (d). Therefore, I = (d) and I is principal.

Definition. A principal ideal domain is an integral domain such that every ideal is principal.

Proposition. Every Euclidean domain is a PID. This containment is proper, i.e. not every PID is a
Euclidean domain.

Example. Z is a PID. Every ideal is a subring, hence a subgroup, and hence is cyclic.

Proposition. Let R be a PID, I ⊆ R a nonzero ideal. If I is prime, then I is maximal.

Proof. Suppose I ⊆ J ⊆ R for some ideal J. We show I = J or J = R. Since R is a PID, I and J
are principal, so there exists a, b ∈ R such that I = (a) and J = (b). First, I ⊆ J, i.e. (a) ⊆ (b) so
a ∈ (b) and there exists x ∈ R such that a = bx. Thus, bx ∈ (a) = I. But I is prime, hence b ∈ (a)
or x ∈ (a). If b ∈ (a), then (b) ⊆ (a) and (a) = (b), i.e. I = J. If x ∈ (a), there exists y ∈ R such
that x = ay. Then x = ay = bxy = xby. Thus, x(by− 1) = 0. Since R is an integral domain, x = 0
or by− 1 = 0. If x = 0, then I = 0 but I 6= 0 by assumption. Thus, 1 = by and b is a unit. Thus,
(b) = R, i.e. J = R. Therefore, I is maximal.

Proposition. If R[x] is a PID, then R is a field.

Proof. Since R ⊆ R[x], R is also an integral domain. Note that R[x]/(x) ∼= R so (x) is prime. Thus,
(x) is maximal since R[x] is a PID. Thus, R[x]/(x) is a field. But R[x]/(x) ∼= R so R is a field.

Theorem (Ascending Chain Condition). In a PID, any strictly ascending chain of ideals is finite in
length, i.e. I1 ( I2 ( . . . must be finite.

Proof. Let I = ∪n ∈ NIn. This is an ideal. We are in a PID, hence I is principal, i.e. there exists
b ∈ R such that I = (b). Thus, b ∈ I = ∪n ∈ NIn. So there exists k ∈ N such that b ∈ Ik. Thus,
I1, I2, . . . , Ik−1 ⊆ Ik and Ik+1 ⊆ Ik. Thus our chain is finite.

Definition. Let R be an integral domain.

1. Let r ∈ R, r 6= 0, and r be not a unit. We say r is irreducible in R if r = ab implies a or b is a
unit in R. Otherwise, r is reducible.

2. An element 0 6= p ∈ R is called prime if (p) is a prime ideal of R, i.e. p is not a unit and p|ab
implies p|a or p|b.

3. a and b are associate in R if there exists a unit u ∈ R such that a = ub.

Proposition. In an integral domain, prime elements are irreducible.

Proof. Let p ∈ R and (p) be prime. Suppose p = ab where a, b ∈ R. We want to show that a or b
is a unit. Note that p ∈ (p) so ab ∈ (p) and either a ∈ (p) or b ∈ (p). Without loss of generality,
let a ∈ (p). Then there exists r ∈ R such that a = pr. Thus, p = ab = prb so p(1− rb) = 0. Since
p 6= 0 by assumption, 1 = rb since R is an integral domain so b is a unit.
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Note. Irreducible elements are not necessarily prime.

Example. Consider 3 ∈ Z[
√
−5]. Suppose we can factor 3. Let 3 = a(1 + b

√
−5)(1 + c

√
−5).

Expanding gives a(1− 5bc) + 5abc
√
−5 so abc = 0 and a − 5abc = 3. Thus a = 3 and bc = 0.

This means that 1 = (1 + b
√
−5)(1 + c

√
−5) = 1− 5bc + bc

√
−5 and 5bc = bc

√
−5 so 3 is not

irreducible. However, note that 3|(1+
√
−5)(1−

√
−5). Another way to see this is by using norms

where N(a + b
√
−5) = a2 + 5b2 and N(3) = 9 = f 2 + 5g2.

Proposition. In a PID, a nonzero element is prime if and only if it is irreducible.

Proof. The forward direction is trivial so we prove the reverse direction. Let p ∈ R be irreducible.
We want to show that (p) is prime. But in a PID, maximal ideals are prime so we show that (p) is
maximal. Suppose (p) ⊆ M ⊆ R. Since R is a PID, there exists m ∈ R such that M = (m). This
means that p ∈ (m) and there exists r ∈ R such that p = mr. But p is irreducible so m or r is a unit
in R. Thus, (m) = R or (m) = (p) so (p) is maximal and therefore prime.

Definition. A unique factorization domain is an integral domain R such that for a nonzero nonunit
r,

1. There exists irreducible elements p1, . . . , pn ∈ R such that r = p1 p2 . . . pn.

2. If r = q1q2 . . . qm for irreducible qi, then m = n and there exists σ ∈ Sn such that pi and qσ(i)

are associate. The pi are not necessarily distinct.

Example. The following are examples and non-examples of UFDs.

1. Fields are UFDs.

2. If R is a UFD, then R[x] is a UFD.

3. Z[2i] is not a UFD. Note that 4 = 2 · 2 = (2i)(−2i) and i /∈ Z[2i] = {a + b2i : a, b ∈ Z}.

Proposition. PIDs are UFDs.

Proof. Let r ∈ R be a nonzero nonunit. If r is irreducible then we are done. Otherwise, r = r1r2.
If ri is irreducible, we are done. Otherwise, r = r11r12 . . .. We then have (r) ⊆ (r1) ⊆ (r11) ⊆ . . ..
This is an ascending chain of ideals in a PID. Thus, there exists n ∈N such that Im = In for m ≥ n.
Then r = r1 . . . r1...1. Uniqueness can be proved by induction on n.

Corollary (Fundamental Theorem of Arithmetic). Z is a UFD.

Note. There is a chain of proper containment of types of rings as follows.

field ( Euclidean domain: Z

( principal ideal domain: Z[(1 +
√
−19)/2]

( unique factorization domain: Z[x]

( integral domain: Z[
√
−5]

( commutative ring with 1: Z6
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