Real Analysis Notes

Rational Numbers and Bounds

If $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$, then

a	с	ad + bc	а	c_a	d - bc	a	с	ас	а.	С	ad
\overline{b}^+	\overline{d} –	bd	\overline{b} –	$\overline{d} = -$	bd	\overline{b} \hat{b}	\overline{d} –	\overline{bd}	\overline{b} ·	\overline{d} –	\overline{bc}

provided that $\frac{c}{d} \neq \frac{0}{1}$.

Note. Strictly speaking, we need to show that these operations are <u>well-defined</u> or that they don't depend on the choice of representatives from the equivalence classes.

Definition. Suppose *S* is an ordered set, and $E \subseteq S$. If there exists $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say *E* is **bounded above** and we call β an **upper bound**. The terms **bounded below** and **lower bound** are defined similarly.

Definition. Suppose *S* is an ordered set, $E \subseteq S$, and *E* is bounded above. Suppose there exists $\alpha \in S$ such that α is an upper bound for *E* and if $\gamma < \alpha$, then γ is not an upper bound for *E*, then α is the **least upper bound** of *E* or the **supremum** of *E*, and we write $\alpha = \sup E$. The **greatest lower bound** and **infimum** (inf *E*) are defined similarly.

Example. Consider the set $\{r \in \mathbb{Q} : r^2 < 2\}$, which has no supremum in \mathbb{Q} .

Definition. An ordered set *S* has the **least-upper-bound property** if the following is true: if $E \subseteq S$, *E* is not empty, and *E* is bounded above, then sup *E* exists in *S*.

Proposition. If an ordered set has the least-upper-bound property, then it also has the greatest-lower-bound property.

Definition. There exists an ordered field \mathbb{R} (called the <u>real numbers</u>) which has the least-upperbound property, and it contains an isomorphic copy of \mathbb{Q} .

Note. Finite ordered fields do not exist. Consider $0 \le 1 \le 1 + 1 \le ...$ which can't be a finite chain.

Dedekind Cuts

- 1. Define the elements of \mathbb{R} as subsets of \mathbb{Q} called <u>**cuts**</u>, where a cut is a subset α of \mathbb{Q} such that
 - (a) α is a nonempty proper subset of \mathbb{Q} ($\alpha \neq \emptyset$ and $\alpha \neq \mathbb{Q}$).
 - (b) If $p \in \alpha$, $q \in \mathbb{Q}$, and q < p, then $q \in \alpha$.

- (c) If $p \in \alpha$, then p < r for some $r \in \alpha$ (can't be in the set and be an upper bound).
- 2. Define an order on \mathbb{R} where $\alpha < \beta$ if and only if α is a proper subset of β .
- 3. Show that the ordered set \mathbb{R} has the least-upper-bound property. To do this, suppose *A* is a nonempty subset of \mathbb{R} that is bounded above. Let γ be the union of all $\alpha \in A$. Then show $\gamma \in \mathbb{R}$ and $\gamma = \sup A$.
- 4. For $\alpha, \beta \in \mathbb{R}$, define the sum $\alpha + \beta$ to be the set of all sums r + s where $r \in \alpha$ and $s \in \beta$. Define $0^* = \{t \in \mathbb{Q} : t < 0\}$ then show axioms for addition in fields hold for \mathbb{R} , and that 0^* is the additive identity.
- 5. Show that if $\alpha, \beta, \gamma \in \mathbb{R}$ and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$. This is part of showing that \mathbb{R} is an ordered field.
- 6. For $\alpha, \beta \in \mathbb{R}$, where $\alpha > 0^*$ and $\beta > 0^*$, define the product $\alpha\beta$ to be $\{p \in \mathbb{Q} : q \le rs, r \in \alpha, s \in \beta, r > 0, s > 0\}$. Note that $\alpha\beta > 0^*$ if $\alpha > 0^*$ and $\beta > 0^*$, which is part of showing that \mathbb{R} is an ordered field.
- 7. Extend the definition of multiplication to all of \mathbb{R} by setting, for all $\alpha, \beta \in \mathbb{R}, \alpha 0^* = 0^* \alpha = 0^*$ and

$$\alpha\beta = \begin{cases} (-\alpha)(-\beta) & \alpha < 0^*, \beta < 0^* \\ -[(-\alpha)(\beta)] & \alpha < 0^*, \beta > 0^* \\ -[(\alpha)(-\beta)] & \alpha > 0^*, \beta < 0^* \end{cases}$$

then prove the distributive law.

- 8. Associate to each $r \in \mathbb{Q}$ the real number $r^* = \{t \in \mathbb{Q} : t < r\}$ and let $\mathbb{Q}^* = \{r^* : r \in \mathbb{Q}\}$. These are the rational cuts in \mathbb{R} .
- 9. Show that \mathbb{Q} is isomorphic to \mathbb{Q}^* as ordered fields.

Properties of Real Numbers

Theorem. Any two ordered fields with the least upper-bound-property are isomorphic.

Theorem. If $x, y \in \mathbb{R}$, and x > 0, then there is a positive integer *n* such that nx > y. This is called the **Archimedean property** of \mathbb{R} .

Proof. Let $A = \{nx : n \in \mathbb{Z}^+\}$ and suppose the Archimedean property is false. Then *y* would be an upper bound of *A*. But then *A* would have a least upper bound. Say $\alpha = \sup A$. Since x > 0, $\alpha - x < \alpha$, and $\alpha - x$ is not an upper bound. Thus, $\alpha - x < mx$ for some $m \in \mathbb{Z}^+$. But then $\alpha < (m + 1)x$, which contradicts the fact that α is an upper bound of *A*. Thus, the Archimedean property must be true.

Theorem. If $x, y \in \mathbb{R}$ and x < y, then there exists $p \in \mathbb{Q}$ such that $x . We say that <math>\mathbb{Q}$ is **dense** in \mathbb{R} .

Theorem. For every positive real number *x* and every positive integer *n*, there is exactly one positive real number *y* such that $y^n = x$.

Proof. There is at most one since $0 < y_1 < y_2$ implies $y_1^n < y_2^n$. Let $E = \{t \in \mathbb{R} : t > 0, t^n < x\}$. Then *E* is nonempty since $t = \frac{x}{1+x} \implies 0 < t < 1 \implies t^n < t < x \implies t \in E$. We also know *E* is bounded above since $t > 1 + x \implies t^n > t > x \implies t \notin E$ and *t* is an upper bound. Define $y = \sup E$. We can then show that $y^n < x$ and $y^n > x$ each lead to contradictions.

Question. Given a real number in decimal form, what is its associated Dedekind cut?

Cardinality of Sets

Definition. Let *A* and *B* be sets. If there is a bijection from *A* to *B*, then we say *A* and *B* have the same **cardinality** (or 'size') and write $A \sim B$. We also write |A| = |B| where |A| denotes the cardinality of *A*.

Definition. Let \mathbb{N} denote the natural numbers $\{1, 2, 3, ...\}$, also denoted \mathbb{Z}^+ . For $n \in \mathbb{N}$, let $J_n = \{1, 2, ..., n\}$ and $J_0 = \emptyset$. For any set A,

- 1. *A* is <u>**finite</u>** if $A \sim J_n$ for some $n \in \mathbb{N} \cup \{0\}$.</u>
- 2. *A* is **<u>infinite</u>** if it is not finite.
- 3. *A* is **countable** if $A \sim \mathbb{N}$.
- 4. *A* is **<u>uncountable</u>** if *A* is neither finite nor countable.
- 5. *A* is **at most countable** if *A* is finite or countable.

Note. We can put an order on the cardinalities where $|A| \leq |B|$ if and only if there exists an injection from *A* to *B*.

Proposition. Every infinite subset of a countable set is countable.

Proposition. Let $\{E_n\}$ where $n \in \mathbb{Z}^+$ be a sequence of countable sets. If $S = \bigcup_{n=1}^{\infty} E_n$, then *S* is countable.

Proof. Let the elements of E_i be as follows

$$E_{1} = \{x_{11}, x_{12}, x_{13}, \ldots\}$$
$$E_{2} = \{x_{21}, x_{22}, x_{23}, \ldots\}$$
$$\ldots$$
$$E_{i} = \{x_{i1}, x_{i2}, x_{i3}, \ldots\}$$
$$\ldots$$

We can traverse these elements diagonally to get $S = \{x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13}, x_{41}, ...\}$. Since *S* is at most countable and $E_1 \subseteq S$ is countable, we have that *S* is countable.

Proposition. Let *A* be a countable set and B_n be the set of all *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_k \in A$ for k = 1, 2, ..., n. Then B_n is countable for all $n \in \mathbb{N}$.

Theorem. Let *A* be the set of all sequences of 0's and 1's. Then *A* is uncountable.

Proof. Let $E = \{e_1, e_2, ...\}$ be a countable subset of *A*. For each e_i , we analyze its *i*th digit. We then construct $e \in A$ such that the *i*th digit of *e* is the opposite of the *i*th digit of e_i . For example, if we have

$$e_{1} = (0, 1, 0, 1, 1, 1, 0, 1, ...)$$

$$e_{2} = (1, 1, 0, 1, 0, 1, 1, 0, ...)$$

$$e_{3} = (0, 0, 1, 1, 0, 0, 1, 1, ...)$$

$$e_{4} = (1, 0, 1, 0, 1, 0, 1, 1, ...)$$
....

Then e = (1, 0, 0, 1, ...). Since $e \notin E$ but $e \in A$, every countable subset of A is a proper subset of A. Thus, A is uncountable.

Metric Spaces

Definition

A set *X*, whose elements we will call **points**, is a **metric space** if there is a function $d : X \times X \rightarrow \mathbb{R}$ such that $\forall p, q \in X$

1. d(p,q) > 0 if $p \neq q$, and d(p,p) = 0.

2.
$$d(p,q) = d(q,p)$$
.

3. $d(p,q) \le d(p,r) + d(r,q), \forall r \in X$ (triangle inequality).

Definition. The number d(p,q) is the **<u>distance</u>** from *p* to *q*, and *d* is a <u>metric</u>.

Note. \mathbb{R}^k is a metric space with the usual metric $d(x, y) = |x - y|, x, y \in \mathbb{R}^k$.

Proposition. Every subset *Y* of a metric space *X* is also a metric space where we restrict the metric of *X* to points in *Y*.

Open and Closed Sets

Definition. Let X be a metric space, $p \in X$, and $E \subseteq X$.

- 1. Let $r \in \mathbb{R}^+$. The **neighborhood** of p with <u>radius</u> r is the set $N_r(p) = \{q \in X : d(p,q) < r\}$.
- 2. The point *p* is a **limit point** of *E* if every neighborhood of *p* contains a point $q \in E$ and $q \neq p$.
- 3. If $p \in E$ and p is not a limit point of E, then p is an **isolated point** of E.

- 4. *E* is **<u>closed</u>** if every limit point of *E* is in *E*.
- 5. If $p \in E$ and there is an $r \in \mathbb{R}^+$ such that $N_r(p) \subseteq E$, then p is an **interior point** of E.
- 6. *E* is **open** if every point of *E* is an interior point of *E*.
- 7. The **complement** of *E* in *X* is the set $E^c = \{x \in X : x \notin E\}$.
- 8. *E* is **perfect** if it is closed and if every point of *E* is a limit point of *E*.
- 9. *E* is **bounded** if there exists a number $M \in \mathbb{R}^+$ and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- 10. *E* is **dense** in X if every point of X is in *E* or a limit of *E* (or both).

Proposition. Every neighborhood is an open set.

Proof. Consider the neighborhood $E = N_r(p)$, and let $q \in E$. Then $r - d(p,q) \in \mathbb{R}^+$. For all points s such that d(q,s) < r - d(p,q), we have $d(p,s) \le d(p,q) + d(q,s) < d(p,q) + (r - d(p,q)) = r$, implying $s \in N_r(p)$. Thus, q is an interior point of E, and the result follows.

Proposition. If p is a limit point of E, then every neighborhood of p contains infinitely many points of E.

Proposition. Let *X* be a metric space and suppose $E \subseteq X$. The set *E* is open in *X* if and only if its complement is closed.

Proof. We first prove the forward direction then the backward direction.

 (\Rightarrow) Suppose *E* is open. If *x* is a limit point of E^c , then every neighborhood of *x* contains a point of E^c . In this case, *x* can't be an interior point of *E*, and because *E* is open, $x \in E^c$. Thus, E^c is closed.

(\Leftarrow) Now suppose E^c is closed. If $x \in E$ then $x \notin E^c$ and is thus not a limit point of E^c . In this case, there is a neighborhood N(x) such that $N(x) \cap E^c = \emptyset$, implying that $N(x) \subseteq E$. Thus, x is an interior point and E is open.

Theorem. Consider the following statements regarding unions and intersections of open and closed sets.

- 1. For any collection $\{G_{\alpha}\}$ of open sets, $\cup_{\alpha} G_{\alpha}$ is open.
- 2. For any collection $\{F_{\alpha}\}$ of closed sets, $\bigcap_{\alpha} F_{\alpha}$ is closed.
- 3. For any finite collection G_1, G_2, \ldots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is open.
- 4. For any finite collection F_1, F_2, \ldots, F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Definition. Let *X* be a metric space. If $E \subseteq X$, let *E'* be the set of limit points of *E*. The **closure** of *E* is the set $\overline{E} = E \cup E'$.

Proposition. If *X* is a metric space and $E \subseteq X$, then

- 1. \overline{E} is closed.
- 2. $E = \overline{E}$ if and only if *E* is closed.
- 3. $\overline{E} \subseteq F$ for every closed subset *F* of *X* such that $E \subseteq F$.

Note. \overline{E} is the smallest closed set that contains *E*.

Compactness

Definition. Let *X* be a metric space, and let $E \subseteq X$. An **<u>open cover</u>** of *E* is a collection $\{G_{\alpha}\}$ of open subsets of *X* such that $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Definition. If $\{G_{\alpha}\}$ is an open cover of *E*, then a subset of $\{G_{\alpha}\}$ that is also an open cover of *E* is called a **<u>subcover</u>** of $\{G_{\alpha}\}$.

Definition

A subset *K* of a metric space is **compact** if every open cover of *K* contains a finite subcover.

Proposition. Every finite set in a metric space is compact.

Proposition. Compact subsets are closed.

Proof. Let *K* be a compact subset of a metric space *X*. We will show that *K* is closed by showing that K^c is open. Suppose $p \in K^c$. We will show that K^c is open by showing that p is an interior point of K^c . For each $q \in K$, let V_q and W_q be neighborhoods of p and q, of radius less than half the distance between p and q. Since K is compact, there are finitely many points, say q_1, \ldots, q_n in K such that if $W = W_{q_1} \cup W_{q_2} \cup \ldots \cup W_{q_n}$, then $K \subseteq W$. If $V = V_{q_1} \cap V_{q_2} \cap \ldots \cap V_{q_n}$, then V is a neighborhood of p that does not intersect W, which covers K. Thus, $V \subseteq K^c$, and p is therefore an interior point of K^c .

Proposition. Suppose $K \subseteq X \subseteq Y$. Then *K* is compact relative to *X* if and only if *K* is compact relative to *Y*.

Proposition. Closed subsets of compact sets are compact.

Proposition. If *F* is closed and *K* is compact, then $F \cap K$ is compact.

Proposition. If *E* is an infinite subset of a compact set *K*, then *E* has a limit point in *K*.

Proof. Suppose no point of *K* is a limit point of *E*. Then each point $q \in K$ would have a neighborhood V_q that contains at most one point of *E* (namely q, if $q \in E$). But then no finite subset of $\{V_q\}$ can cover *E*, and the same is true for *K* because $E \subseteq K$. This contradicts the fact that *K* is compact. Thus, the theorem follows.

Theorem

Let *E* be a subset of \mathbb{R}^k (viewed as a metric space with the usual metric). The following are equivalent.

- 1. *E* is closed and bounded.
- 2. *E* is compact.
- 3. Every infinite subset of *E* has a limit point in *E*.

Note. The Heine-Borel Theorem is "(1) if and only if (2)" for \mathbb{R}^k .

Note. For all metric spaces, "(2) if and only if (3)" holds.

Perfect Sets

Definition. Let *X* be a metric space, and *E* be a subset of *X*. We say *E* is **perfect** if

- 1. *E* is closed and
- 2. Every point of *E* is a limit point of *E*.

Proposition. If *P* is a nonempty perfect set in \mathbb{R}^k , then *P* is uncountable.

Proof. Since *P* has limit points, we know *P* is infinite. Suppose *P* is countable and define the points of *P* by $x_1, x_2, ...$ Let V_1 be any neighborhood of x_1 . If V_1 has radius *r*, note that $\overline{V_1} = \{y \in \mathbb{R}^k : |y - x_1| \le r\}$. We will use V_1 to recursively construct a sequence $\{V_n\}$ of neighborhoods as follows. Suppose V_n has been constructed so that $V_n \cap P$ is not empty. Since every point of *P* is a limit point of *P*, there is a neighborhood V_{n+1} such that $\overline{V_{n+1}} \subseteq V_n, x_n \notin \overline{V_{n+1}}$, and $V_{n+1} \cap P \neq \{\}$. By the last condition, our recursive construction can proceed to give us a sequence $\{V_n\}$ of neighborhoods. Let $K_n = \overline{V_n} \cap P$. Since $\overline{V_n}$ is closed and bounded, $\overline{V_n}$ is compact and K_n is compact. Since $x_n \notin \overline{V_{n+1}}$, no point of *P* is contained in $\bigcap_{n=1}^{\infty} K_n$. But since $K_n \subseteq P$, this implies that $\bigcap_{n=1}^{\infty} K_n$ is empty. But each K_n is not empty by the fact that $V_{n+1} \cap P \neq \{\}$ and $K_n \supseteq K_{n+1}$. But this contradicts the corollary that if $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supseteq K_{n+1}$, then $\bigcap_{n=1}^{\infty} K_n$ is not empty. The theorem follows.

Proposition. Let $a, b \in \mathbb{R}$ and a < b. Then the interval [a, b] is uncountable. Also, \mathbb{R} is uncountable. able.

Note. There are, however, perfect sets in \mathbb{R} that contain no intervals.

Example. Let E_0 be the interval [0,1]. Remove the segment $(\frac{1}{3}, \frac{2}{3})$ and let $E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Removing the middle thirds from these intervals yields $E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$. Continuing gives us a sequence $\{E_n\}$ of compact sets such that

- 1. $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$ and
- 2. E_n is the union of 2^n disjoint intervals, each of length $\frac{1}{3^n}$.

Then the set $P = \bigcap_{n=1}^{\infty} E_n$ is called the **<u>Cantor set</u>**. Note that *P* is compact. Also, it is not empty. *P* contains no intervals and *P* is perfect.

Convergence and Limits

Definition

A sequence $\{p_n\}$ in a metric space *X* is said to **converge** if there is a point $p \in X$ such that for every $\epsilon > 0$, there is an integer *N* such that $n \ge N$ implies that $d(p_n, p) < \epsilon$. In this case, we say $\{p_n\}$ **converges to** *p*, or that *p* is the <u>limit</u> of $\{p_n\}$, and we write

$$\lim_{n\to\infty}p_n=p$$

Definition. We say $\{p_n\}$ is **bounded** if the set of all p_n is bounded.

Definition. If $\{p_n\}$ does not converge, then it **diverges**.

Proposition. Let $\{p_n\}$ be a sequence in a metric space *X*.

- 1. $\{p_n\}$ converges to $p \in X$ if and only if every neighborhood of p contains p_n for all but finitely many n.
- 2. If $\{p_n\}$ converges to p and p', then p = p'.
- 3. If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- 4. If $E \subseteq X$ and p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $\lim_{n \to \infty} p_n = p$.

Proposition. Suppose $\{s_n\}$ and $\{t_n\}$ are complex sequences, and $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$. Then,

- 1. $\lim_{n\to\infty}(s_n+t_n)=s+t.$
- 2. $\lim_{n\to\infty} (c+s_n) = c+s$ and $\lim_{n\to\infty} cs_n = cs$.
- 3. $\lim_{n\to\infty} s_n t_n = st$.
- 4. $\lim_{n\to\infty} \frac{1}{s_n} = \frac{1}{s}$, provided that $s_n \neq 0$ and $s \neq 0$.

Proof Idea. The key insight for (3) is that $s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s)$.

Proposition. If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$.

Proof. Let $\epsilon > 0$ and let *N* be a positive integer grater than $\frac{1}{\epsilon^{1/p}}$. If $n \ge N$, then $\frac{1}{n^p} \le \frac{1}{N^p} < \frac{1}{(1/\epsilon^{1/p})^p} = \epsilon$. It follows that $\frac{1}{n^p} \to 0$.

Proposition. If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

Proof. Case p > 1. Put $x_n = \sqrt[n]{p} - 1$. Then $x_n > 0$ and by the Binomial Theorem, $1 + nx_n \le (1 + x_n)^n = p$. Thus, $0 < x_n \le \frac{p-1}{n}$. Hence $x_n \to 0$ so $\sqrt[n]{p} \to 1$.

Case p = 1. This is trivial.

Case $0 . Consider the sequence <math>\{\frac{1}{\sqrt[n]{p}}\}$. By the first case, $\frac{1}{\sqrt[n]{p}} = \sqrt[n]{\frac{1}{p}} \to 1$. Thus, $\sqrt[n]{p} \to 1$.

Proposition. If n > 0, then $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

Proof. Let $x_n = \sqrt[n]{n-1}$. Then $x_n \ge 0$ and by the Binomial Theorem, $n = (1 + x_n)^n \ge \frac{n(n-1)}{2}x_n^2$. Thus when $n \ge 2$, $0 \le x_n \le \sqrt{\frac{2}{n-1}}$. But $\sqrt{\frac{2}{n-1}} \to 0$, thus $x_n \to 0$ so $\sqrt[n]{n} \to 1$.

Proposition. If p > 0 and $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.

Proof. Let *k* be a positive integer such that $k > \alpha$. When n > 2k,

$$(1+p)^n > \binom{n}{k} p^k = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} > \frac{n}{2} \cdot \frac{n}{2} \cdot \dots \cdot \frac{n}{2} \cdot \frac{p^k}{k!} = \frac{n^k}{2^k} \frac{p^k}{k!}$$

Thus, when n > 2k,

$$0 < \frac{n^{\alpha}}{(1+p)^n} < \frac{n^{\alpha}}{n^k/2^k \cdot p^k/k!} = \frac{2^k k!}{p^k} n^{\alpha-k}$$

Since $\alpha - k < 0$, $n^{\alpha - k} = \frac{1}{n^{k - \alpha}} \to 0$. Therefore, $\frac{n^{\alpha}}{(1 + p)^n} \to 0$.

Proposition. If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Proof. Let $p = \frac{1}{|x|} - 1$. Then p > 0 and setting $\alpha = 0$ in the identity $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$ yields

$$0 = \lim_{n \to \infty} \frac{1}{(1+p)^n} = \lim_{n \to \infty} \frac{1}{(1/|x|)^n} = \lim_{n \to \infty} |x|^n$$

It follows that $x^n \to 0$.

Cauchy Sequences

Definition

A sequence $\{p_n\}$ in a metric space *X* is a **Cauchy sequence** if for every $\epsilon > 0$, there is an integer *N* such that $d(p_n, p_m) < \epsilon$ if $m, n \ge \overline{N}$.

Proposition. In any metric space *X*, every convergent sequence is a Cauchy sequence.

Proposition. If *X* is a compact metric space and if $\{p_n\}$ is a Cauchy sequence, then $\{p_n\}$ converges to some point in *X*.

Proposition. In \mathbb{R}^k , every Cauchy sequence converges.

Definition. A metric space is **complete** if every Cauchy sequence converges.

Proposition. All compact metric spaces and all Euclidean spaces are complete metric spaces.

Note. How might we 'complete' the rationals? We can think of \mathbb{R} as equivalences classes of Cauchy sequnces such that $\{p_n\} \sim \{q_n\}$ if and only if $d(p_n, q_n) \to 0$.

Definition

Given a complex sequence $\{a_n\}$, we can create a new sequence $\{s_n\}$ where $s_n = \sum_{k=1}^n a_k$. We call $\{s_n\}$ an (infinite) **series** and is often denoted $\sum_{n=1}^{\infty} a_n$. The numbers s_n are the **partial sums** of the series. Also, if $s_n \to s$, then we will write

$$\sum_{n=1}^{\infty} a_n = s$$

Note. Sometimes we will consider series of the form $s_0, s_1, s_2, ...$ and write $\sum_{n=0}^{\infty} a_n$. We might also just write $\sum a_n$.

Proposition. The series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$, there is an integer *N* such that $|\sum_{k=n}^{m} a_k| < \epsilon$ whenever $m \ge n \ge N$.

Proof. Note that \mathbb{C} is essentially \mathbb{R}^2 and thus $\{s_n\}$ converges if and only if it is a Cauchy sequence. Furthermore if $m \ge n - 1$, then $d(s_m, s_{n-1}) = |s_m - s_{n-1}| = |\sum_{k=n}^m a_k|$.

Tests for Convergence

Proposition. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Proof. Take m = n in the previous theorem, which gives us $|a_n| < \epsilon$ when $n \ge N$.

Note. It is possible for $a_n \to 0$ and have $\sum a_n$ be divergent. For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Proof Idea. Consider the following.

$$\underbrace{1+1/2}_{>1/2} + \underbrace{1/3 + 1/4}_{>1/2} + \underbrace{1/5 + 1/6 + 1/7 + 1/8}_{>1/2} + \underbrace{1/9 + \ldots + 1/16}_{>1/2} + \ldots$$

Theorem (Comparison Test). Let N_0 be a fixed integer. If $|a_n| \leq c_n$ for $n \geq N_0$, and $\sum_{n=1}^{\infty} c_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $a_n \geq d_n \geq 0$ for $n \geq N_0$, and if $\sum_{n=1}^{\infty} d_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Proof. Given $\epsilon > 0$, we know there is some $N > N_0$ such that $m \ge n \ge N$ implies $\sum_{k=n}^{m} c_k < \epsilon$. Thus, $|\sum_{k=n}^{m} a_k| \le \sum_{k=n}^{m} |a_k| \le \sum_{k=n}^{m} c_k < \epsilon$ and the first part follows. Also, the second part follows from the first part because if $\sum a_n$ converges, then so must $\sum d_n$.

Note. To use the Comparison Test, we need to know a series of nonnegative real numbers whose convergence or divergence is known.

Proposition. If $0 \le x < 1$, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. If x = 1, the series diverges.

Proof. The key insight is that if $x \neq 1$, we let $s_n = \sum_{k=0}^n x^k = \frac{1-x^{n+1}}{1-x}$ and the result follows by letting $n \to \infty$. Note that when x = 1, the series clearly diverges.

Theorem (Cauchy Condensation Test). Suppose $a_1 \ge a_2 \ge ... \ge 0$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the series $\sum_{k=0}^{\infty} 2^k a_{2^k} = a_1 + 2a_2 + 4a_4 + 8a_8 + ...$ converges.

Proof. A series of nonnegative real terms converges if and only if its partial sums form a bounded sequence. Thus, it suffices to consider the boundedness of the partial sums $s_n = a_1 + a_2 + \ldots + a_n$ and $t_k = a_1 + 2a_2 + \ldots + 2^k a_{2^k}$. For $n < 2^k$, $s_n \le t_k$ because

$$s_n \le (a_1) + (a_2 + a_3) + \ldots + (a_{2^k} + \ldots + a_{2^{k+1}-1})$$

$$\le a_1 + 2a_2 + \ldots + 2^k a_{2^k}$$

$$= t_k$$

For $n > 2^k$, $2s_n \ge t_k$ because

$$s_n \ge (a_1) + (a_2) + (a_3 + a_4) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$$

$$\ge \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k}$$

$$= \frac{1}{2}t_k$$

It follows that the sequences $\{s_n\}$ and $\{t_n\}$ are either both bounded or both unbounded and the theorem follows.

Proposition (*p*-Series Test). $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof. If $p \ge 0$, then the terms in the sequence don't converge to 0 so $\sum \frac{1}{n^p}$ diverges. If p > 0, then by the previous theorem, we can consider the series

$$\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^p} = \sum_{k=0}^{\infty} (\frac{1}{2^{p-1}})^k$$

But this is a geometric series which will converge if $0 \le \frac{1}{2^{p-1}} < 1$ and will diverge if $\frac{1}{2^{p-1}} \ge 1$ so the original series will converge if p > 1 and diverge if $p \le 1$.

Definition. Let $\{s_n\}$ be a sequence of real numbers and let $\{s_{n_k}\}$ be some subsequence that converges to some *x*. Then *x* is a **subsequential limit** of $\{s_n\}$.

Definition. Let $\{s_n\}$ be a sequence of real numbers and let *E* be the set of all subsequential limits. We define

$$\limsup_{n \to \infty} s_n = \sup E \qquad \qquad \liminf_{n \to \infty} s_n = \inf E$$

Theorem (The Root Test). Given $\sum a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$.

- 1. If $\alpha < 1$, then $\sum a_n$ converges.
- 2. If $\alpha > 1$, then $\sum a_n$ diverges.
- 3. If $\alpha = 1$, then the test gives no info.

Proof. If $\alpha < 1$, then choose β such that $\alpha < \beta < 1$ and an integer N such that $\sqrt[n]{|a_n|} < \beta$ for $n \ge N$. Thus if $n \ge N$, we have $|a_n| < \beta^n$. Since $0 < \beta < 1$, $\sum \beta^n$ converges because it is a geometric series and by the comparison test, $\sum a_n$ converges.

If $\alpha > 1$, then there is a sequence $\{n_k\}$ such that $\sqrt[n_k]{|a_{n_k}|} \to \alpha$. Thus $|a_n| > 1$ for infinitely many n, so it must be the case that $a_n \nrightarrow 0$ and therefore $\sum a_n$ can't converge.

Note that $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$ both have $\alpha = 1$ but they diverge and converge, respectively.

Theorem (The Ratio Test). Suppose $a_n \neq 0$ for all *n*. The series $\sum a_n$

- 1. Converges if $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$.
- 2. Diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for all $n \ge n_0$ where n_0 is some fixed integer.

Proof. If $\limsup_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1$, then choose some $\beta < 1$ and an integer N such that $|\frac{a_{n+1}}{a_n}| < \beta$ for all $n \ge N$. We then have for all $n \ge N$, $|a_n| < (|a_N|\beta^{-N})\beta^n$. Since $0 < \beta < 1$, $\sum \beta^n$ converges. Thus by the comparison test, $\sum a_n$ converges.

If $|a_{n+1}| \ge |a_n|$ for $n \ge n_0$, then $a_n \not\to 0$, so $\sum a_n$ diverges.

Note. The Ratio Test is not useful for $\sum \frac{1}{n}$ and $\sum \frac{1}{n^2}$.

Example. Consider the series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \dots$ In this case, $\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{8}$, $\limsup_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$, so the Ratio Test does not apply. But $\lim_{n \to \infty} \sqrt[n]{a_n} = 2$ so the series converges by the Root Test.

Properties of Convergence

Definition. Let $z \in \mathbb{C}$ and let $\{c_n\}$ be a sequence of complex numbers. The series $\sum c_n z^n$ is a (complex) **power series**.

Proposition. Given the power series $\sum c_n z^n$, let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|c_n|}$ and let $R = \frac{1}{\alpha}$ (where $\alpha = 0 \implies R = +\infty$ and $\alpha = +\infty \implies R = 0$). Then $\sum c_n z^n$ converges if |z| < R, and diverges if |z| > R.

Proof. Let $a_n = c_n z^n$ and apply the Root Test. We see that

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = |z| \limsup_{n \to \infty} \sqrt[n]{|c_n|} = |z|\alpha = \frac{|z|}{R}$$

Note that if $\frac{|z|}{R} > 1$ then |z| > R and the series diverges. Similarly, if $\frac{|z|}{R} < 1$, then |z| < R and the series converges.

Proposition. Given two sequences $\{a_n\}$ and $\{b_n\}$, let $A_n = \sum_{k=0}^n a_k$ be the nth partial sum of $\sum a_n$ for $n \ge 0$ and $A_{-1} = 0$. If $0 \le p \le q$, then

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p$$

Proof. We have

$$\sum_{n=p}^{q} a_{n}b_{n} = \sum_{n=p}^{q} (A_{n} - A_{n-1})b_{n}$$
$$= \sum_{n=p}^{q} A_{n}b_{n} - \sum_{n=p}^{q} A_{n-1}b_{n}$$
$$= \sum_{n=p}^{q-1} A_{n}(b_{n} - b_{n+1}) + A_{q}b_{q} - A_{p-1}b_{p}$$

Note. This is a "partial summation formula". We will use it to understand series of the form $\sum a_n b_n$.

Proposition. Suppose the partial sums A_n of $\sum a_n$ form a bounded sequence and $b_0 \ge b_1 \ge b_2 \ge \dots$ and $\lim_{n\to\infty} b_n = 0$. Then $\sum a_n b_n$ converges.

Proof. Choose *M* such that $|A_n| \leq M$ for all *n*. Given $\epsilon > 0$, there is an integer *N* such that $b_N < \frac{\epsilon}{2M}$. If $N \leq p \leq q$, then

$$\begin{vmatrix} \sum_{n=p}^{q} a_n b_n \end{vmatrix} = \begin{vmatrix} \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \end{vmatrix}$$
$$\leq M \begin{vmatrix} \sum_{n=p}^{q-1} (b_n - b_{n+1}) + b_q \end{vmatrix} + M \lvert b_p \rvert$$
$$= M(2b_p)$$
$$\leq 2Mb_p$$
$$\leq 2Mb_N$$
$$< \epsilon$$

The convergence of $\sum a_n b_n$ follows from the Cauchy Criterion.

Proposition. Suppose $|c_1| \ge |c_2| \ge |c_3| \ge \ldots$, $c_{2m-1} \ge 0$, $c_{2m} \le 0$, and $\lim_{n\to\infty} c_n = 0$. Then $\sum c_n$ converges.

Proof. Apply the previous proposition with $a_n = (-1)^{n+1}$ and $b_n = |c_n|$.

Definition. An **alternating series** is a series for which $c_{2m-1} \ge 0$ and $c_{2m} \le 0$.

Definition. The series $\sum a_n$ is said to **converge absolutely** if the series $\sum |a_n|$ converges.

Proposition. If $\sum a_n$ converges absolutely, then $\sum a_n$ converges.

Proof. Convergence follows from the inequality $|\sum_{k=n}^{m} a_k| \leq \sum_{k=n}^{m} |a_k|$ and the Cauchy Criterion.

Definition. If $\sum a_n$ converges but not absolutely, then we say it converges **conditionally**.

Note. The Comparison Test, Root Test, and Ratio Test are really tests for absolute convergence. They don't give any information about conditionally convergent series.

Definition. The <u>sum</u> of two series $\sum a_n$ and $\sum b_n$ is the series $\sum d_n$ where $d_n = a_n + b_n$ for all n. The **product** of $\sum a_n$ and $\sum b_n$ is the series $\sum c_n$ where $c_n = a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$.

Proposition. If $\sum a_n = A$ and $\sum b_n = B$, then $\sum (a_n + b_n) = A + B$ and $\sum ca_n = cA$.

Note. It is possible to take the product of two convergent series and yield a series that does not converge.

Proposition. Suppose $\sum a_n$ converges absolutely, $\sum a_n = A$, $\sum b_n = B$, and $c_n = \sum_{k=0}^n a_k b_{n-k}$, then $\sum c_n = AB$.

Proposition. If $\sum a_n = A$, $\sum b_n = B$, $\sum c_n = C$, and $c_n = a_0b_n + \ldots + a_nb_0$, then AB = C.

Definition. Let $\{k_n\}$ for n = 1, 2, 3, ... be a sequence in which every positive integer appears once and only once. If $a'_k = a_{k_n}$ then we say $\sum a'_n$ is a **rearrangement** of $\sum a_n$.

Example. The series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges to some nonzero real number, say *A*. If we could rearrange the terms without changing the limit *A*, we would see that

$$\begin{split} A &= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots \\ &= 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots \\ &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{12} + \dots \\ &= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \dots \\ &= \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots\right) \\ &= \frac{1}{2}A \end{split}$$

But then A = 0, which is a contradiction of $A \neq 0$.

Proposition. Let $\sum a_n$ be a real series that converges but not absolutely. If $-\infty \leq \alpha \leq \beta \leq +\infty$, then there exists a rearrangement $\sum a'_n$ with partial sums s'_n such that $\liminf_{n\to\infty} s'_n = \alpha$ and $\limsup_{n\to\infty} s'_n = \beta$.

Proposition. If $\sum a_n$ converges absolutely, then every rearrangement of $\sum a_n$ converges and they all converge to the same number.

Continuity

Definition

Let *X* and *Y* be metric space with metrics d_X and d_Y , respectively. If *p* is a limit point of *X*, and $f : X \to Y$, then we write

$$\lim_{x \to n} f(x) = q$$

if there is a point $q \in Y$ with the following property.

For every $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x),q) < \epsilon$ for all $x \in X$ for which $d_X(x,p) < \delta$.

In this case, we say that "the limit of f(x) as x approaches p is a".

Definition

Suppose *X* and *Y* are metric spaces, $p \in X$, and $f : X \to Y$. We say *f* is **continuous at** *p* if for every $\epsilon > 0$ there exists $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ for all $x \in X$ such that $d_X(x, p) < \delta$.

Definition

If f is continuous at every point of X, then we say f is <u>continuous on X</u>, or simply that f is <u>continuous</u>.

Example. Every function $f : \mathbb{Z} \to \mathbb{R}$ is continuous.

Theorem. Suppose *p* is a limit point of *X* and *f* : *X* \rightarrow *Y*. Then *f* is continuous at *p* if and only if $\lim_{x \to p} f(x) = f(p)$.

Theorem. Suppose $f : X \to Y$. The map f is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.

Proof. We first prove the forward direction then the backward direction.

(⇒) Suppose *f* is continuous on *X* and *V* is an open set of *Y*. We will show every point of $f^{-1}(V)$ is an interior point of $f^{-1}(V)$. Suppose $p \in X$ and $f(p) \in V$. Since *V* is open, there exists $\epsilon > 0$ such that $y \in V$ if $d_X(f(p), y) < \epsilon$. Since *f* is continuous on *p*, there exists $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ if $d_X(x, p) < \delta$. Thus, the neighborhood $N_{\delta}(p)$ is contained in $f^{-1}(V)$. It follows that every point of $f^{-1}(V)$ is an interior point of $f^{-1}(V)$. Thus $f^{-1}(V)$ is open as desired.

(\Leftarrow) Suppose $f^{-1}(V)$ is open in X for every open set V in Y. Fix $p \in X$ and $\epsilon > 0$ and let $V = N_{\epsilon}(f(p))$. Then V is open, so $f^{-1}(V)$ is open. Hence there exists $\delta > 0$ such that $N_{\delta}(p) \subseteq f^{-1}(V)$. In other words, there exists $\delta > 0$ such that $d_Y(f(x), f(p)) < \epsilon$ for all $x \in X$ for which $d_X(x, p) < \delta$. Thus *f* is continuous at *p*. It follows that *f* is continuous on *X*.

Proposition. Suppose $f : X \to Y$. The map f is continuous on X if and only if $f^{-1}(K)$ is closed for every closed set K in Y.

Proposition. Suppose *X* and *Y* are metric spaces and that *X* is compact. If $f : X \to Y$ is continuous, then f(X) is compact.

Proof. Let $\{V_{\alpha}\}$ be an open covering of f(X). Since f is continuous, $\{f^{-1}(V_{\alpha})\}$ is an open covering of X. Since X is compact, there are finitely many indices $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that $X \subseteq f^{-1}(V_{\alpha_1}) \cup \ldots \cup f^{-1}(V_{\alpha_n})$. Thus, $f(X) \subseteq V_{\alpha_1} \cup \ldots \cup V_{\alpha_n}$ implying that f(X) is compact.

Example. There is no continuous map from [0, 1] to \mathbb{R} .

Proposition. If *f* is a continuous map of a compact metric space *X* into \mathbb{R}^k , then f(X) is closed and bounded.

Proposition. Suppose *f* is a continuous real function on a compact space *X*, $M = \sup f(x)$, and $m = \inf f(x)$. Then there are points $p, q \in X$ such that f(p) = M and f(q) = m.

Proposition. Let *X* and *Y* be metric spaces and suppose $f : X \to Y$ is continuous and bijective. If *X* is compact, then $f^{-1} : Y \to X$ is continuous.

Proof. It is enough to show that for every open set *V* in *X*, $(f^{-1})^{-1}(V) = f(V)$ is open in *Y*. Let *V* be an open set in *X*. Then *V*^{*c*} is closed in *X*, thus *V*^{*c*} is compact in *X*. Hence, $f(V^c)$ is compact in *Y* and is therefore closed in *Y*. Since *f* is bijective, $f(V)^c = f(V^c)$. Thus, f(V) is open.

Definition. Let *X* and *Y* be metric spaces and $f : X \to Y$. We say *f* is **uniformly continuous** on *X* if for every $\epsilon > 0$ there exists $\delta > 0$ such that $d_Y(f(p), f(q)) < \epsilon$ for all $p, q \in X$ for which $d_X(p,q) < \delta$.

Proposition. Let *X* and *Y* be metric spaces and suppose $f : X \to Y$ is continuous. If *X* is compact, then *f* is uniformly continuous.

Derivatives

Definition

Let *f* be a real-valued function on [a, b]. For any $x \in [a, b]$, define

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$$

provided that the limit exists. Then f' is called the <u>derivative</u> of f. If f' is defined on x, then f is <u>differentiable at x</u>. If f' is defined at every point $x \in E \subseteq [a, b]$, then f is <u>differentiable on E</u>.

Theorem. Let *f* be a function on [a, b]. If *f* is differentiable at $x \in [a, b]$, then *f* is continuous at *x*. **Proposition.** If $f : [a, b] \to \mathbb{R}$, $f : [a, b] \to \mathbb{R}$, and *f* and *g* are both differentiable, then *fg* is differentiable.

Proof. We first note that fg(t) - fg(x) = (f(t) - f(x))g(x) + f(t)(g(t) - g(x)). Then we observe that

$$\lim_{t \to x} \frac{fg(t) - fg(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}g(x) + \lim_{t \to x} f(t)\frac{g(t) - g(x)}{t - x}$$

Thus, (fg)'(x) = f'(x)g(x) + f(x)g'(x).

Note. Similar properties hold for the sum and quotient of two functions. The proof and derivation are similar.

Note. Because you know the derivative of f(x) = c and f(x) = x, you can use the product rule, sum rule, and induction to show that the derivatives of polynomials are what you know they are. You induct by using the identity

$$a_n x^n + \ldots + a_1 x + a_0 = x(a_n x^{n-1} + \ldots + a_2 x + a_1) + a_0$$

Theorem (Generalized Mean Value Theorem). If *f* and *g* are continuous real functions on a closed interval [a, b] which are differentiable in (a, b), then there is a point $x \in (a, b)$ such that

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x)$$

Proof. Define $h : [a,b] \to \mathbb{R}$ by setting h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t). Then h is continuous on [a,b] and differentiable on (a,b). Also, h(a) = f(b)g(a) - f(a)g(b) = h(b). The theorem will follow if we show that h'(x) = 0 for some $x \in (a,b)$. If h is constant then we are done. If h(t) > h(a) for some $t \in (a,b)$, then let x be a point in (a,b) at which h attains its maximum (by the compactness of [a,b]). Thus, h'(x) = 0. If h(t) < h(a) for some $t \in (a,b)$, then the same result holds by using the minimum of h.

Theorem (Mean Value Theorem). If *f* is real and continuous on [a, b] and differentiable on (a, b), then there is a point $x \in (a, b)$ at which

$$f(b) - f(a) = f'(x)(b - a)$$

Corollary. Suppose *f* is differentiable on (*a*, *b*).

1. $f'(x) \ge 0$ for all $x \in (a, b) \implies f$ is monotonically increasing.

- 2. f'(x) = 0 for all $x \in (a, b) \implies f$ is constant.
- 3. $f'(x) \leq 0$ for all $x \in (a, b) \implies f$ is monotonically decreasing.

Proposition. Suppose *f* is a real differentiable function on [a, b]. If $f'(a) < \lambda < f'(b)$, there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

Proof. Set $g(t) = f(t) - \lambda t$. Then $g'(a) = f'(a) - \lambda < 0$ so $g(t_1) < g(a)$ for some $t_1 \in (a, b)$. Also, $g'(b) = f'(b) - \lambda > 0$ so $g(t_2) < g(b)$ for some $t_2 \in (a, b)$. Thus, we know g attains its minimum on [a, b] at some point $x \in (a, b)$. Thus, g'(x) = 0 and $f'(x) = \lambda$.

Theorem (Taylor's Theorem). Suppose *f* is a real function on [a, b], *n* is a positive integer, $f^{(n-1)}$ is continuous on [a, b], and $f^{(n)}(t)$ exists for all $t \in (a, b)$. Let $\alpha, \beta \in [a, b]$ where $\alpha \neq \beta$ and define

$$P_{n-1}(t) = f(\alpha) + f'(\alpha)(t-\alpha) + \frac{1}{2!}f''(\alpha)(t-\alpha)^2 + \dots + \frac{1}{(n-1)!}f^{(n-1)}(\alpha)(t-\alpha)^{n-1}$$
$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^k$$

Then there exists a point *x* between α and β such that $f(\beta) = P_{n-1}(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n$.

Proof. Let *M* be the number such that $f(\beta) = P_{n-1}(\beta) + M(\beta - \alpha)^n$. We want to show that $M = \frac{f^{(n)}(x)}{n!}$ for some *x* between α and β . To do so, define $g : [a,b] \to \mathbb{R}$ by setting $g(t) = f(t) - P_{n-1}(t) - M(t-\alpha)^n$. Then $g^{(n)}(t) = f^{(n)}(t) - n!M$ for all $t \in (a,b)$. Thus, we need to show that $g^{(n)}(x) = 0$ for some *x* between α and β . Since $P_{n-1}^{(k)}(\alpha) = f^{(k)}(\alpha)$ for k = 0, 1, ..., n-1, we have $g(\alpha) = g'(\alpha) = ... = g^{(n-1)}(\alpha) = 0$. Next note that $g(\beta) = 0$ so by the Mean Value Theorem, $g'(x_1) = 0$ for some x_1 between α and β . Since $g'(\alpha) = 0$ and $g'(x_1) = 0$, by the Mean Value Theorem, $g''(x_2) = 0$ for some x_2 between α and x_1 . After *n* such steps, we have $g^{(n)}(x_n) = 0$ for some x_n is also between α and β , this completes the proof.

Note. When n = 1, this is just the Mean Value Theorem.

Note. The polynomial P_{n-1} is a **Taylor polynomial** and we can ask questions about the sequence P_0, P_1, P_2, \ldots such as does it converge.

Convergence of Functions

Consider the following example of a sequence of functions $f_1, f_2, f_3, ...$ where $f_n = \frac{x}{n}$ ($f_n : \mathbb{R} \to \mathbb{R}$). Then the picture we have is

and the functions are converging "pointwise" to the constant function f(x) = 0. Next consider the functions f_n defined on $[0, \infty)$ where

The picture here is as shown and the limit approaches a function resembling a step. In this, each f_n is continuous, but the pointwise limit is not continuous.

Definition. A sequence of functions $\{f_n\}$ **converges uniformly** to a function f if for every $\epsilon > 0$ there is an integer N such that $m \ge N$ implies $|f_n(x) - f(x)| \le \epsilon$ for all $x \in E$.

Proposition (Cauchy Criterion). The sequence $\{f_n\}$ converges uniformly if and only if for every $\epsilon > 0$ there exists an integer *N* such that $n \ge N$ and $m \ge N$ implies $|f_n(x) - f_m(x)| \le \epsilon$ for all $x \in E$.

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$$

Proof. Let $\epsilon > 0$. By the uniform convergence of $\{f_n\}$, there exists an N such that $n \ge N$, $m \ge N$, $t \in E$ imply $|f_n(t) - f_m(t)| \le \epsilon$. Letting $t \to x$ yields $|A_n - A_m| \le \epsilon$ when $n \ge N$ and $m \ge M$, showing that $\{A_n\}$ is a Cauchy sequence (of complex numbers) and therefore converges to some A. Note that for $n \in \mathbb{N}$ and $t \in E$,

$$|f(t) - A| \le |f(t) - f_n(t)| + |f_n(t) - A_n| + |A_n - A|$$

by the Triangle Inequality. Now choose *n* such that for all $t \in E$, $|f(t) - f_n(t)| \leq \frac{\epsilon}{3}$ (which we can do since $f_n \to f$ uniformly) and such that $|A_n - A| \leq \frac{\epsilon}{3}$. Then for this *n*, choose a neighborhood *V* of *x* such that $|f_n(t) - A_n| \leq \frac{\epsilon}{3}$ when $t \in V \cap E$, $t \neq x$. It follows that $|f(t) - A| \leq \epsilon$ when $t \in V \cap E$, $t \neq x$, which is equivalent to $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.

Corollary. If $\{f_n\}$ is a sequence of continuous functions, and if $f_n \to f$ uniformly, then f is continuous.

Proof. By the previous theorem, $\lim_{t\to x} f_n(t) = A_n = f_n(x)$ and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n = \lim_{n\to\infty} f_n(x) = f(x)$.

Definition. If *X* is a metric space, then $\mathscr{C}(X)$ denotes the set of all continuous, complex-valued, and bounded functions with domain *X*.

Definition. We can associate to each $f \in \mathscr{C}(X)$ its **supremum norm**

$$\|f\| = \sup_{x \in X} |f(x)|$$

Proposition. Suppose $f, g \in \mathscr{C}(X)$.

- 1. $||f|| < \infty$.
- 2. ||f|| = 0 if and only if *f* is the zero function.
- 3. $||f + g|| \le ||f|| + ||g||$.

Proposition. Define the distance between *f* and *g* to be ||f - g||. Then $\mathscr{C}(X)$ is a metric space.

Proposition. A sequence $\{f_n\}$ converges to f in $\mathscr{C}(X)$ if and only if $f_n \to f$ uniformly on X.

Proposition. The above metric makes $\mathscr{C}(X)$ into a complete metric space.

Proof. Suppose $\{f_n\}$ is a Cauchy sequence in $\mathscr{C}(X)$. Thus for every $\varepsilon > 0$, there is an N such that $||f_n - f_m|| < \varepsilon$ whenever $n \ge N$ and $m \ge N$. Thus there is a function $f : X \to \mathbb{C}$ to which $\{f_n\}$ converges uniformly. Thus f is continuous. Also, f is bounded since there is an n such that $||f(x) - f_n(x)| < 1$ for all $x \in X$ and f_n is bounded. Hence $f \in \mathscr{C}(X)$ and since $f_n \to f$ uniformly on X, we have $||f - f_n|| \to 0$ as $n \to \infty$.

Theorem (Stone-Weierstrass Theorem). If *f* is a continuous complex function on [a, b], then there exists a sequence of polynomials $\{P_n\}$ such that $\lim_{n\to\infty} P_n(x) = f(x)$ uniformly on [a, b]. Furthermore, if *f* is real, then P_n can be taken to be real.