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Real Analysis Notes

Rational Numbers and Bounds

If a
b , c

d ∈ Q, then

a
b
+

c
d
=

ad + bc
bd

a
b
− c

d
=

ad− bc
bd

a
b
× c

d
=

ac
bd

a
b
÷ c

d
=

ad
bc

provided that c
d 6=

0
1 .

Note. Strictly speaking, we need to show that these operations are well-defined or that they don’t
depend on the choice of representatives from the equivalence classes.

Definition. Suppose S is an ordered set, and E ⊆ S. If there exists β ∈ S such that x ≤ β for every
x ∈ E, we say E is bounded above and we call β an upper bound. The terms bounded below and
lower bound are defined similarly.

Definition. Suppose S is an ordered set, E ⊆ S, and E is bounded above. Suppose there exists
α ∈ S such that α is an upper bound for E and if γ < α, then γ is not an upper bound for
E, then α is the least upper bound of E or the supremum of E, and we write α = sup E. The
greatest lower bound and infimum (inf E) are defined similarly.

Example. Consider the set {r ∈ Q : r2 < 2}, which has no supremum in Q.

Definition. An ordered set S has the least-upper-bound property if the following is true: if E ⊆ S,
E is not empty, and E is bounded above, then sup E exists in S.

Proposition. If an ordered set has the least-upper-bound property, then it also has the greatest-
lower-bound property.

Definition. There exists an ordered field R (called the real numbers) which has the least-upper-
bound property, and it contains an isomorphic copy of Q.

Note. Finite ordered fields do not exist. Consider 0 ≤ 1 ≤ 1 + 1 ≤ . . . which can’t be a finite
chain.

Dedekind Cuts

1. Define the elements of R as subsets of Q called cuts, where a cut is a subset α of Q such that

(a) α is a nonempty proper subset of Q (α 6= ∅ and α 6= Q).

(b) If p ∈ α, q ∈ Q, and q < p, then q ∈ α.
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(c) If p ∈ α, then p < r for some r ∈ α (can’t be in the set and be an upper bound).

2. Define an order on R where α < β if and only if α is a proper subset of β.

3. Show that the ordered set R has the least-upper-bound property. To do this, suppose A is a
nonempty subset of R that is bounded above. Let γ be the union of all α ∈ A. Then show
γ ∈ R and γ = sup A.

4. For α, β ∈ R, define the sum α + β to be the set of all sums r + s where r ∈ α and s ∈ β.
Define 0∗ = {t ∈ Q : t < 0} then show axioms for addition in fields hold for R, and that 0∗

is the additive identity.

5. Show that if α, β, γ ∈ R and β < γ, then α + β < α + γ. This is part of showing that R is an
ordered field.

6. For α, β ∈ R, where α > 0∗ and β > 0∗, define the product αβ to be {p ∈ Q : q ≤ rs, r ∈
α, s ∈ β, r > 0, s > 0}. Note that αβ > 0∗ if α > 0∗ and β > 0∗, which is part of showing
that R is an ordered field.

7. Extend the definition of multiplication to all of R by setting, for all α, β ∈ R, α0∗ = 0∗α = 0∗

and

αβ =


(−α)(−β) α < 0∗, β < 0∗

−[(−α)(β)] α < 0∗, β > 0∗

−[(α)(−β)] α > 0∗, β < 0∗

then prove the distributive law.

8. Associate to each r ∈ Q the real number r∗ = {t ∈ Q : t < r} and let Q∗ = {r∗ : r ∈ Q}.
These are the rational cuts in R.

9. Show that Q is isomorphic to Q∗ as ordered fields.

Properties of Real Numbers

Theorem. Any two ordered fields with the least upper-bound-property are isomorphic.

Theorem. If x, y ∈ R, and x > 0, then there is a positive integer n such that nx > y. This is called
the Archimedean property of R.

Proof. Let A = {nx : n ∈ Z+} and suppose the Archimedean property is false. Then y would
be an upper bound of A. But then A would have a least upper bound. Say α = sup A. Since
x > 0, α− x < α, and α− x is not an upper bound. Thus, α− x < mx for some m ∈ Z+. But then
α < (m + 1)x, which contradicts the fact that α is an upper bound of A. Thus, the Archimedean
property must be true.

Theorem. If x, y ∈ R and x < y, then there exists p ∈ Q such that x < p < y. We say that Q is
dense in R.
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Theorem. For every positive real number x and every positive integer n, there is exactly one
positive real number y such that yn = x.

Proof. There is at most one since 0 < y1 < y2 implies yn
1 < yn

2 . Let E = {t ∈ R : t > 0, tn < x}.
Then E is nonempty since t = x

1+x =⇒ 0 < t < 1 =⇒ tn < t < x =⇒ t ∈ E. We also know E
is bounded above since t > 1 + x =⇒ tn > t > x =⇒ t /∈ E and t is an upper bound. Define
y = sup E. We can then show that yn < x and yn > x each lead to contradictions.

Question. Given a real number in decimal form, what is its associated Dedekind cut?

Cardinality of Sets

Definition. Let A and B be sets. If there is a bijection from A to B, then we say A and B have
the same cardinality (or ‘size’) and write A ∼ B. We also write |A| = |B| where |A| denotes the
cardinality of A.

Definition. Let N denote the natural numbers {1, 2, 3, . . .}, also denoted Z+. For n ∈ N, let
Jn = {1, 2, . . . , n} and J0 = ∅. For any set A,

1. A is finite if A ∼ Jn for some n ∈N∪ {0}.

2. A is infinite if it is not finite.

3. A is countable if A ∼N.

4. A is uncountable if A is neither finite nor countable.

5. A is at most countable if A is finite or countable.

Note. We can put an order on the cardinalities where |A| ≤ |B| if and only if there exists an
injection from A to B.

Proposition. Every infinite subset of a countable set is countable.

Proposition. Let {En} where n ∈ Z+ be a sequence of countable sets. If S = ∪∞
n=1En, then S is

countable.

Proof. Let the elements of Ei be as follows

E1 = {x11, x12, x13, . . .}
E2 = {x21, x22, x23, . . .}

. . .

Ei = {xi1, xi2, xi3, . . .}
. . .

We can traverse these elements diagonally to get S = {x11, x21, x12, x31, x22, x13, x41, . . .}. Since S is
at most countable and E1 ⊆ S is countable, we have that S is countable.
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Proposition. Let A be a countable set and Bn be the set of all n-tuples (a1, a2, . . . , an) where ak ∈ A
for k = 1, 2, . . . , n. Then Bn is countable for all n ∈N.

Theorem. Let A be the set of all sequences of 0’s and 1’s. Then A is uncountable.

Proof. Let E = {e1, e2, . . .} be a countable subset of A. For each ei, we analyze its ith digit. We
then construct e ∈ A such that the ith digit of e is the opposite of the ith digit of ei. For example, if
we have

e1 = ( 0 , 1, 0, 1, 1, 1, 0, 1, . . .)

e2 = (1, 1 , 0, 1, 0, 1, 1, 0, . . .)

e3 = (0, 0, 1 , 1, 0, 0, 1, 1, . . .)

e4 = (1, 0, 1, 0 , 1, 0, 1, 1, . . .)

. . .

Then e = (1, 0, 0, 1, . . .). Since e /∈ E but e ∈ A, every countable subset of A is a proper subset of
A. Thus, A is uncountable.

Metric Spaces

Definition

A set X, whose elements we will call points, is a metric space if there is a function d : X×X →
R such that ∀p, q ∈ X

1. d(p, q) > 0 if p 6= q, and d(p, p) = 0.

2. d(p, q) = d(q, p).

3. d(p, q) ≤ d(p, r) + d(r, q), ∀r ∈ X (triangle inequality).

Definition. The number d(p, q) is the distance from p to q, and d is a metric.

Note. Rk is a metric space with the usual metric d(x, y) = |x− y|, x, y ∈ Rk.

Proposition. Every subset Y of a metric space X is also a metric space where we restrict the metric
of X to points in Y.

Open and Closed Sets

Definition. Let X be a metric space, p ∈ X, and E ⊆ X.

1. Let r ∈ R+. The neighborhood of p with radius r is the set Nr(p) = {q ∈ X : d(p, q) < r}.

2. The point p is a limit point of E if every neighborhood of p contains a point q ∈ E and q 6= p.

3. If p ∈ E and p is not a limit point of E, then p is an isolated point of E.
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4. E is closed if every limit point of E is in E.

5. If p ∈ E and there is an r ∈ R+ such that Nr(p) ⊆ E, then p is an interior point of E.

6. E is open if every point of E is an interior point of E.

7. The complement of E in X is the set Ec = {x ∈ X : x /∈ E}.

8. E is perfect if it is closed and if every point of E is a limit point of E.

9. E is bounded if there exists a number M ∈ R+ and a point q ∈ X such that d(p, q) < M for
all p ∈ E.

10. E is dense in X if every point of X is in E or a limit of E (or both).

Proposition. Every neighborhood is an open set.

Proof. Consider the neighborhood E = Nr(p), and let q ∈ E. Then r− d(p, q) ∈ R+. For all points
s such that d(q, s) < r − d(p, q), we have d(p, s) ≤ d(p, q) + d(q, s) < d(p, q) + (r − d(p, q)) = r,
implying s ∈ Nr(p). Thus, q is an interior point of E, and the result follows.

Proposition. If p is a limit point of E, then every neighborhood of p contains infinitely many
points of E.

Proposition. Let X be a metric space and suppose E ⊆ X. The set E is open in X if and only if its
complement is closed.

Proof. We first prove the forward direction then the backward direction.

(⇒) Suppose E is open. If x is a limit point of Ec, then every neighborhood of x contains a point
of Ec. In this case, x can’t be an interior point of E, and because E is open, x ∈ Ec. Thus, Ec is closed.

(⇐) Now suppose Ec is closed. If x ∈ E then x /∈ Ec and is thus not a limit point of Ec. In
this case, there is a neighborhood N(x) such that N(x) ∩ Ec = ∅, implying that N(x) ⊆ E. Thus,
x is an interior point and E is open.

Theorem. Consider the following statements regarding unions and intersections of open and
closed sets.

1. For any collection {Gα} of open sets, ∪αGα is open.

2. For any collection {Fα} of closed sets, ∩αFα is closed.

3. For any finite collection G1, G2, . . . , Gn of open sets, ∩n
i=1Gi is open.

4. For any finite collection F1, F2, . . . , Fn of closed sets, ∪n
i=1Fi is closed.

Definition. Let X be a metric space. If E ⊆ X, let E′ be the set of limit points of E. The closure of
E is the set E = E ∪ E′.

Proposition. If X is a metric space and E ⊆ X, then
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1. E is closed.

2. E = E if and only if E is closed.

3. E ⊆ F for every closed subset F of X such that E ⊆ F.

Note. E is the smallest closed set that contains E.

Compactness

Definition. Let X be a metric space, and let E ⊆ X. An open cover of E is a collection {Gα} of
open subsets of X such that E ⊆ ∪αGα.

Definition. If {Gα} is an open cover of E, then a subset of {Gα} that is also an open cover of E is
called a subcover of {Gα}.

Definition

A subset K of a metric space is compact if every open cover of K contains a finite subcover.

Proposition. Every finite set in a metric space is compact.

Proposition. Compact subsets are closed.

Proof. Let K be a compact subset of a metric space X. We will show that K is closed by showing
that Kc is open. Suppose p ∈ Kc. We will show that Kc is open by showing that p is an interior
point of Kc. For each q ∈ K, let Vq and Wq be neighborhoods of p and q, of radius less than half
the distance between p and q. Since K is compact, there are finitely many points, say q1, . . . , qn in
K such that if W = Wq1 ∪Wq2 ∪ . . . ∪Wqn , then K ⊆ W. If V = Vq1 ∩ Vq2 ∩ . . . ∩ Vqn , then V is a
neighborhood of p that does not intersect W, which covers K. Thus, V ⊆ Kc, and p is therefore an
interior point of Kc.

Proposition. Suppose K ⊆ X ⊆ Y. Then K is compact relative to X if and only if K is compact
relative to Y.

Proposition. Closed subsets of compact sets are compact.

Proposition. If F is closed and K is compact, then F ∩ K is compact.

Proposition. If E is an infinite subset of a compact set K, then E has a limit point in K.

Proof. Suppose no point of K is a limit point of E. Then each point q ∈ K would have a neighbor-
hood Vq that contains at most one point of E (namely q, if q ∈ E). But then no finite subset of {Vq}
can cover E, and the same is true for K because E ⊆ K. This contradicts the fact that K is compact.
Thus, the theorem follows.
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Theorem

Let E be a subset of Rk (viewed as a metric space with the usual metric). The following are
equivalent.

1. E is closed and bounded.

2. E is compact.

3. Every infinite subset of E has a limit point in E.

Note. The Heine-Borel Theorem is “(1) if and only if (2)” for Rk.

Note. For all metric spaces, “(2) if and only if (3)” holds.

Perfect Sets

Definition. Let X be a metric space, and E be a subset of X. We say E is perfect if

1. E is closed and

2. Every point of E is a limit point of E.

Proposition. If P is a nonempty perfect set in Rk, then P is uncountable.

Proof. Since P has limit points, we know P is infinite. Suppose P is countable and define the points
of P by x1, x2, . . .. Let V1 be any neighborhood of x1. If V1 has radius r, note that V1 = {y ∈ Rk :
|y− x1| ≤ r}. We will use V1 to recursively construct a sequence {Vn} of neighborhoods as follows.
Suppose Vn has been constructed so that Vn ∩ P is not empty. Since every point of P is a limit point
of P, there is a neighborhood Vn+1 such that Vn+1 ⊆ Vn, xn /∈ Vn+1, and Vn+1 ∩ P 6= {}. By the last
condition, our recursive construction can proceed to give us a sequence {Vn} of neighborhoods.
Let Kn = Vn ∩ P. Since Vn is closed and bounded, Vn is compact and Kn is compact. Since xn /∈
Vn+1, no point of P is contained in ∩∞

n=1Kn. But since Kn ⊆ P, this implies that ∩∞
n=1Kn is empty.

But each Kn is not empty by the fact that Vn+1 ∩ P 6= {} and Kn ⊇ Kn+1. But this contradicts the
corollary that if {Kn} is a sequence of nonempty compact sets such that Kn ⊇ Kn+1, then ∩∞

n=1Kn

is not empty. The theorem follows.

Proposition. Let a, b ∈ R and a < b. Then the interval [a, b] is uncountable. Also, R is uncount-
able.

Note. There are, however, perfect sets in R that contain no intervals.

Example. Let E0 be the interval [0, 1]. Remove the segment ( 1
3 , 2

3 ) and let E1 = [0, 1
3 ] ∪ [ 2

3 , 1]. Re-
moving the middle thirds from these intervals yields E2 = [0, 1

9 ]∪ [
2
9 , 3

9 ]∪ [
6
9 , 7

9 ]∪ [
8
9 , 1]. Continuing

gives us a sequence {En} of compact sets such that

1. E1 ⊇ E2 ⊇ E3 ⊇ . . . and

2. En is the union of 2n disjoint intervals, each of length 1
3n .

Then the set P = ∩∞
n=1En is called the Cantor set. Note that P is compact. Also, it is not empty. P

contains no intervals and P is perfect.
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Convergence and Limits

Definition

A sequence {pn} in a metric space X is said to converge if there is a point p ∈ X such that for
every ε > 0, there is an integer N such that n ≥ N implies that d(pn, p) < ε. In this case, we
say {pn} converges to p, or that p is the limit of {pn}, and we write

lim
n→∞

pn = p

Definition. We say {pn} is bounded if the set of all pn is bounded.

Definition. If {pn} does not converge, then it diverges.

Proposition. Let {pn} be a sequence in a metric space X.

1. {pn} converges to p ∈ X if and only if every neighborhood of p contains pn for all but finitely
many n.

2. If {pn} converges to p and p′, then p = p′.

3. If {pn} converges, then {pn} is bounded.

4. If E ⊆ X and p is a limit point of E, then there is a sequence {pn} in E such that limn →
∞pn = p.

Proposition. Suppose {sn} and {tn} are complex sequences, and limn→∞ sn = s and limn→∞ tn =

t. Then,

1. limn→∞(sn + tn) = s + t.

2. limn→∞(c + sn) = c + s and limn→∞ csn = cs.

3. limn→∞ sntn = st.

4. limn→∞
1
sn

= 1
s , provided that sn 6= 0 and s 6= 0.

Proof Idea. The key insight for (3) is that sntn − st = (sn − s)(tn − t) + s(tn − t) + t(sn − s).

Proposition. If p > 0, then limn→∞
1

np = 0.

Proof. Let ε > 0 and let N be a positive integer grater than 1
ε1/p . If n ≥ N, then 1

np ≤ 1
Np <

1
(1/ε1/p)p = ε. It follows that 1

np → 0.

Proposition. If p > 0, then limn→∞ n
√

p = 1.

Proof. Case p > 1. Put xn = n
√

p − 1. Then xn > 0 and by the Binomial Theorem, 1 + nxn ≤
(1 + xn)n = p. Thus, 0 < xn ≤ p−1

n . Hence xn → 0 so n
√

p→ 1.

Case p = 1. This is trivial.

Case 0 < p < 1. Consider the sequence { 1
n√p}. By the first case, 1

n√p = n
√

1
p → 1. Thus, n

√
p→ 1.
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Proposition. If n > 0, then limn→∞
n
√

n = 1.

Proof. Let xn = n
√

n− 1. Then xn ≥ 0 and by the Binomial Theorem, n = (1 + xn)n ≥ n(n−1)
2 x2

n.

Thus when n ≥ 2, 0 ≤ xn ≤
√

2
n−1 . But

√
2

n−1 → 0, thus xn → 0 so n
√

n→ 1.

Proposition. If p > 0 and α ∈ R, then limn→∞
nα

(1+p)n = 0.

Proof. Let k be a positive integer such that k > α. When n > 2k,

(1 + p)n >

(
n
k

)
pk =

n(n− 1)(n− 2) . . . (n− k + 1)
k!

>
n
2
· n

2
· . . . · n

2
· pk

k!
=

nk

2k
pk

k!

Thus, when n > 2k,

0 <
nα

(1 + p)n <
nα

nk/2k · pk/k!
=

2kk!
pk nα−k

Since α− k < 0, nα−k = 1
nk−α → 0. Therefore, nα

(1+p)n → 0.

Proposition. If |x| < 1, then limn→∞ xn = 0.

Proof. Let p = 1
|x| − 1. Then p > 0 and setting α = 0 in the identity limn→∞

nα

(1+p)n = 0 yields

0 = lim
n→∞

1
(1 + p)n = lim

n→∞

1
(1/|x|)n = lim

n→∞
|x|n

It follows that xn → 0.

Cauchy Sequences

Definition

A sequence {pn} in a metric space X is a Cauchy sequence if for every ε > 0, there is an
integer N such that d(pn, pm) < ε if m, n ≥ N.

Proposition. In any metric space X, every convergent sequence is a Cauchy sequence.

Proposition. If X is a compact metric space and if {pn} is a Cauchy sequence, then {pn} converges
to some point in X.

Proposition. In Rk, every Cauchy sequence converges.

Definition. A metric space is complete if every Cauchy sequence converges.

Proposition. All compact metric spaces and all Euclidean spaces are complete metric spaces.

Note. How might we ‘complete’ the rationals? We can think of R as equivalences classes of
Cauchy sequnces such that {pn} ∼ {qn} if and only if d(pn, qn)→ 0.
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Definition

Given a complex sequence {an}, we can create a new sequence {sn} where sn = ∑n
k=1 ak. We

call {sn} an (infinite) series and is often denoted ∑∞
n=1 an. The numbers sn are the partial sums

of the series. Also, if sn → s, then we will write

∞

∑
n=1

an = s

Note. Sometimes we will consider series of the form s0, s1, s2, . . . and write ∑∞
n=0 an. We might also

just write ∑ an.

Proposition. The series ∑∞
n=1 an converges if and only if for every ε > 0, there is an integer N such

that |∑m
k=n ak| < ε whenever m ≥ n ≥ N.

Proof. Note that C is essentially R2 and thus {sn} converges if and only if it is a Cauchy sequence.
Furthermore if m ≥ n− 1, then d(sm, sn−1) = |sm − sn−1| = |∑m

k=n ak|.

Tests for Convergence

Proposition. If ∑∞
n=1 an converges, then limn→∞ an = 0.

Proof. Take m = n in the previous theorem, which gives us |an| < ε when n ≥ N.

Note. It is possible for an → 0 and have ∑ an be divergent. For example, ∑∞
n=1

1
n diverges.

Proof Idea. Consider the following.

1 + 1/2︸ ︷︷ ︸
>1/2

+ 1/3 + 1/4︸ ︷︷ ︸
>1/2

+ 1/5 + 1/6 + 1/7 + 1/8︸ ︷︷ ︸
>1/2

+ 1/9 + . . . + 1/16︸ ︷︷ ︸
>1/2

+ . . .

Theorem (Comparison Test). Let N0 be a fixed integer. If |an| ≤ cn for n ≥ N0, and ∑∞
n=1 cn

converges, then ∑∞
n=1 an converges. If an ≥ dn ≥ 0 for n ≥ N0, and if ∑∞

n=1 dn diverges, then
∑∞

n=1 an diverges.

Proof. Given ε > 0, we know there is some N > N0 such that m ≥ n ≥ N implies ∑m
k=n ck < ε.

Thus, |∑m
k=n ak| ≤ ∑m

k=n |ak| ≤ ∑m
k=n ck < ε and the first part follows. Also, the second part follows

from the first part because if ∑ an converges, then so must ∑ dn.

Note. To use the Comparison Test, we need to know a series of nonnegative real numbers whose
convergence or divergence is known.

Proposition. If 0 ≤ x < 1, then ∑∞
n=0 xn = 1

1−x . If x = 1, the series diverges.

Proof. The key insight is that if x 6= 1, we let sn = ∑n
k=0 xk = 1−xn+1

1−x and the result follows by
letting n→ ∞. Note that when x = 1, the series clearly diverges.

Theorem (Cauchy Condensation Test). Suppose a1 ≥ a2 ≥ . . . ≥ 0. Then the series ∑∞
n=1 an

converges if and only if the series ∑∞
k=0 2ka2k = a1 + 2a2 + 4a4 + 8a8 + . . . converges.
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Proof. A series of nonnegative real terms converges if and only if its partial sums form a bounded
sequence. Thus, it suffices to consider the boundedness of the partial sums sn = a1 + a2 + . . . + an

and tk = a1 + 2a2 + . . . + 2ka2k . For n < 2k, sn ≤ tk because

sn ≤ (a1) + (a2 + a3) + . . . + (a2k + . . . + a2k+1−1)

≤ a1 + 2a2 + . . . + 2ka2k

= tk

For n > 2k, 2sn ≥ tk because

sn ≥ (a1) + (a2) + (a3 + a4) + . . . + (a2k−1+1 + . . . + a2k)

≥ 1
2

a1 + a2 + 2a4 + . . . + 2k−1a2k

=
1
2

tk

It follows that the sequences {sn} and {tn} are either both bounded or both unbounded and the
theorem follows.

Proposition (p-Series Test). ∑∞
n=1

1
np converges if p > 1 and diverges if p ≤ 1.

Proof. If p ≥ 0, then the terms in the sequence don’t converge to 0 so ∑ 1
np diverges. If p > 0, then

by the previous theorem, we can consider the series

∞

∑
k=0

2k 1
(2k)p =

∞

∑
k=0

(
1

2p−1 )
k

But this is a geometric series which will converge if 0 ≤ 1
2p−1 < 1 and will diverge if 1

2p−1 ≥ 1 so
the original series will converge if p > 1 and diverge if p ≤ 1.

Definition. Let {sn} be a sequence of real numbers and let {snk} be some subsequence that con-
verges to some x. Then x is a subsequential limit of {sn}.

Definition. Let {sn} be a sequence of real numbers and let E be the set of all subsequential limits.
We define

lim sup
n→∞

sn = sup E lim inf
n→∞

sn = inf E

Theorem (The Root Test). Given ∑ an, let α = lim supn→∞
n
√
|an|.

1. If α < 1, then ∑ an converges.

2. If α > 1, then ∑ an diverges.

3. If α = 1, then the test gives no info.

Proof. If α < 1, then choose β such that α < β < 1 and an integer N such that n
√
|an| < β for

n ≥ N. Thus if n ≥ N, we have |an| < βn. Since 0 < β < 1, ∑ βn converges because it is a
geometric series and by the comparison test, ∑ an converges.
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If α > 1, then there is a sequence {nk} such that nk
√
|ank | → α. Thus |an| > 1 for infinitely many n,

so it must be the case that an 6→ 0 and therefore ∑ an can’t converge.

Note that ∑ 1
n and ∑ 1

n2 both have α = 1 but they diverge and converge, respectively.

Theorem (The Ratio Test). Suppose an 6= 0 for all n. The series ∑ an

1. Converges if lim supn→∞ |
an+1

an
| < 1.

2. Diverges if | an+1
an
| ≥ 1 for all n ≥ n0 where n0 is some fixed integer.

Proof. If lim supn→∞ |
an+1

an
| < 1, then choose some β < 1 and an integer N such that | an+1

an
| < β for

all n ≥ N. We then have for all n ≥ N, |an| < (|aN |β−N)βn. Since 0 < β < 1, ∑ βn converges.
Thus by the comparison test, ∑ an converges.

If |an+1| ≥ |an| for n ≥ n0, then an 6→ 0, so ∑ an diverges.

Note. The Ratio Test is not useful for ∑ 1
n and ∑ 1

n2 .

Example. Consider the series 1
2 + 1+ 1

8 +
1
4 +

1
32 +

1
16 +

1
128 +

1
64 + . . .. In this case, lim infn→∞

an+1
an

=
1
8 , lim supn→∞

an+1
an

= 2, so the Ratio Test does not apply. But limn→∞ n
√

an = 2 so the series con-
verges by the Root Test.

Properties of Convergence

Definition. Let z ∈ C and let {cn} be a sequence of complex numbers. The series ∑ cnzn is a
(complex) power series.

Proposition. Given the power series ∑ cnzn, let α = lim supn→∞
n
√
|cn| and let R = 1

α (where
α = 0 =⇒ R = +∞ and α = +∞ =⇒ R = 0). Then ∑ cnzn converges if |z| < R, and diverges if
|z| > R.

Proof. Let an = cnzn and apply the Root Test. We see that

lim sup
n→∞

n
√
|an| = |z| lim sup

n→∞

n
√
|cn| = |z|α =

|z|
R

Note that if |z|R > 1 then |z| > R and the series diverges. Similarly, if |z|R < 1, then |z| < R and the
series converges.

Proposition. Given two sequences {an} and {bn}, let An = ∑n
k=0 ak be the nth partial sum of ∑ an

for n ≥ 0 and A−1 = 0. If 0 ≤ p ≤ q, then

q

∑
n=p

anbn =
q−1

∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp
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Proof. We have

q

∑
n=p

anbn =
q

∑
n=p

(An − An−1)bn

=
q

∑
n=p

Anbn −
q

∑
n=p

An−1bn

=
q−1

∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp

Note. This is a “partial summation formula”. We will use it to understand series of the form
∑ anbn.

Proposition. Suppose the partial sums An of ∑ an form a bounded sequence and b0 ≥ b1 ≥ b2 ≥
. . . and limn→∞ bn = 0. Then ∑ anbn converges.

Proof. Choose M such that |An| ≤ M for all n. Given ε > 0, there is an integer N such that
bN < ε

2M . If N ≤ p ≤ q, then∣∣∣∣∣ q

∑
n=p

anbn

∣∣∣∣∣ =
∣∣∣∣∣q−1

∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp

∣∣∣∣∣
≤ M

∣∣∣∣∣q−1

∑
n=p

(bn − bn+1) + bq

∣∣∣∣∣+ M
∣∣bp
∣∣

= M(2bp)

≤ 2Mbp

≤ 2MbN

< ε

The convergence of ∑ anbn follows from the Cauchy Criterion.

Proposition. Suppose |c1| ≥ |c2| ≥ |c3| ≥ . . ., c2m−1 ≥ 0, c2m ≤ 0, and limn→∞ cn = 0. Then ∑ cn

converges.

Proof. Apply the previous proposition with an = (−1)n+1 and bn = |cn|.

Definition. An alternating series is a series for which c2m−1 ≥ 0 and c2m ≤ 0.

Definition. The series ∑ an is said to converge absolutely if the series ∑ |an| converges.

Proposition. If ∑ an converges absolutely, then ∑ an converges.

Proof. Convergence follows from the inequality |∑m
k=n ak| ≤ ∑m

k=n |ak| and the Cauchy Criterion.

Definition. If ∑ an converges but not absolutely, then we say it converges conditionally.

Note. The Comparison Test, Root Test, and Ratio Test are really tests for absolute convergence.
They don’t give any information about conditionally convergent series.
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Definition. The sum of two series ∑ an and ∑ bn is the series ∑ dn where dn = an + bn for all n.
The product of ∑ an and ∑ bn is the series ∑ cn where cn = a0bn + a1bn−1 + . . . + anb0.

Proposition. If ∑ an = A and ∑ bn = B, then ∑(an + bn) = A + B and ∑ can = cA.

Note. It is possible to take the product of two convergent series and yield a series that does not
converge.

Proposition. Suppose ∑ an converges absolutely, ∑ an = A, ∑ bn = B, and cn = ∑n
k=0 akbn−k, then

∑ cn = AB.

Proposition. If ∑ an = A, ∑ bn = B, ∑ cn = C, and cn = a0bn + . . . + anb0, then AB = C.

Definition. Let {kn} for n = 1, 2, 3, . . . be a sequence in which every positive integer appears once
and only once. If a′k = akn then we say ∑ a′n is a rearrangement of ∑ an.

Example. The series 1− 1
2 + 1

3 −
1
4 + . . . converges to some nonzero real number, say A. If we

could rearrange the terms without changing the limit A, we would see that

A = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ . . .

= 1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
+ . . .

=

(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ . . .

=
1
2
− 1

4
+

1
6
− 1

8
+

1
10
− 1

12
+ . . .

=
1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ . . .

)
=

1
2

A

But then A = 0, which is a contradiction of A 6= 0.

Proposition. Let ∑ an be a real series that converges but not absolutely. If −∞ ≤ α ≤ β ≤
+∞, then there exists a rearrangement ∑ a′n with partial sums s′n such that lim infn→∞ s′n = α and
lim supn→∞ s′n = β.

Proposition. If ∑ an converges absolutely, then every rearrangement of ∑ an converges and they
all converge to the same number.

Continuity
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Definition

Let X and Y be metric space with metrics dX and dY, respectively. If p is a limit point of X,
and f : X → Y, then we write

lim
x→p

f (x) = q

if there is a point q ∈ Y with the following property.

For every ε > 0, there exists δ > 0 such that dY( f (x), q) < ε for all x ∈ X for which
dX(x, p) < δ.

In this case, we say that “the limit of f (x) as x approaches p is a”.

Definition

Suppose X and Y are metric spaces, p ∈ X, and f : X → Y. We say f is continuous at p
if for every ε > 0 there exists δ > 0 such that dY( f (x), f (p)) < ε for all x ∈ X such that
dX(x, p) < δ.

Definition

If f is continuous at every point of X, then we say f is continuous on X, or simply that f is
continuous.

Example. Every function f : Z→ R is continuous.

Theorem. Suppose p is a limit point of X and f : X → Y. Then f is continuous at p if and only if
limx→p f (x) = f (p).

Theorem. Suppose f : X → Y. The map f is continuous on X if and only if f−1(V) is open in X
for every open set V in Y.

Proof. We first prove the forward direction then the backward direction.

(⇒) Suppose f is continuous on X and V is an open set of Y. We will show every point of
f−1(V) is an interior point of f−1(V). Suppose p ∈ X and f (p) ∈ V. Since V is open, there exists
ε > 0 such that y ∈ V if dX( f (p), y) < ε. Since f is continuous on p, there exists δ > 0 such
that dY( f (x), f (p)) < ε if dX(x, p) < δ. Thus, the neighborhood Nδ(p) is contained in f−1(V). It
follows that every point of f−1(V) is an interior point of f−1(V). Thus f−1(V) is open as desired.

(⇐) Suppose f−1(V) is open in X for every open set V in Y. Fix p ∈ X and ε > 0 and let
V = Nε( f (p)). Then V is open, so f−1(V) is open. Hence there exists δ > 0 such that Nδ(p) ⊆
f−1(V). In other words, there exists δ > 0 such that dY( f (x), f (p)) < ε for all x ∈ X for which
dX(x, p) < δ. Thus f is continuous at p. It follows that f is continuous on X.

Proposition. Suppose f : X → Y. The map f is continuous on X if and only if f−1(K) is closed
for every closed set K in Y.
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Proposition. Suppose X and Y are metric spaces and that X is compact. If f : X → Y is continuous,
then f (X) is compact.

Proof. Let {Vα} be an open covering of f (X). Since f is continuous, { f−1(Vα)} is an open covering
of X. Since X is compact, there are finitely many indices α1, α2, . . . , αn such that X ⊆ f−1(Vα1) ∪
. . . ∪ f−1(Vαn). Thus, f (X) ⊆ Vα1 ∪ . . . ∪Vαn implying that f (X) is compact.

Example. There is no continuous map from [0, 1] to R.

Proposition. If f is a continuous map of a compact metric space X into Rk, then f (X) is closed
and bounded.

Proposition. Suppose f is a continuous real function on a compact space X, M = sup f (x), and
m = inf f (x). Then there are points p, q ∈ X such that f (p) = M and f (q) = m.

Proposition. Let X and Y be metric spaces and suppose f : X → Y is continuous and bijective. If
X is compact, then f−1 : Y → X is continuous.

Proof. It is enough to show that for every open set V in X, ( f−1)−1(V) = f (V) is open in Y. Let
V be an open set in X. Then Vc is closed in X, thus Vc is compact in X. Hence, f (Vc) is compact
in Y and is therefore closed in Y. Since f is bijective, f (V)c = f (Vc). Thus, f (V) is open.

Definition. Let X and Y be metric spaces and f : X → Y. We say f is uniformly continuous on
X if for every ε > 0 there exists δ > 0 such that dY( f (p), f (q)) < ε for all p, q ∈ X for which
dX(p, q) < δ.

Proposition. Let X and Y be metric spaces and suppose f : X → Y is continuous. If X is compact,
then f is uniformly continuous.

Derivatives

Definition

Let f be a real-valued function on [a, b]. For any x ∈ [a, b], define

f ′(x) = lim
t→x

f (t)− f (x)
t− x

provided that the limit exists. Then f ′ is called the derivative of f . If f ′ is defined on
x, then f is differentiable at x. If f ′ is defined at every point x ∈ E ⊆ [a, b], then f is
differentiable on E.

Theorem. Let f be a function on [a, b]. If f is differentiable at x ∈ [a, b], then f is continuous at x.

Proposition. If f : [a, b] → R, f : [a, b] → R, and f and g are both differentiable, then f g is
differentiable.

Proof. We first note that f g(t)− f g(x) = ( f (t)− f (x))g(x) + f (t)(g(t)− g(x)). Then we observe
that

lim
t→x

f g(t)− f g(x)
t− x

= lim
t→x

f (t)− f (x)
t− x

g(x) + lim
t→x

f (t)
g(t)− g(x)

t− x
Thus, ( f g)′(x) = f ′(x)g(x) + f (x)g′(x).
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Note. Similar properties hold for the sum and quotient of two functions. The proof and derivation
are similar.

Note. Because you know the derivative of f (x) = c and f (x) = x, you can use the product rule,
sum rule, and induction to show that the derivatives of polynomials are what you know they are.
You induct by using the identity

anxn + . . . + a1x + a0 = x(anxn−1 + . . . + a2x + a1) + a0

Theorem (Generalized Mean Value Theorem). If f and g are continuous real functions on a closed
interval [a, b] which are differentiable in (a, b), then there is a point x ∈ (a, b) such that

[ f (b)− f (a)]g′(x) = [g(b)− g(a)] f ′(x)

Proof. Define h : [a, b] → R by setting h(t) = [ f (b) − f (a)]g(t) − [g(b) − g(a)] f (t). Then h is
continuous on [a, b] and differentiable on (a, b). Also, h(a) = f (b)g(a) − f (a)g(b) = h(b). The
theorem will follow if we show that h′(x) = 0 for some x ∈ (a, b). If h is constant then we are
done. If h(t) > h(a) for some t ∈ (a, b), then let x be a point in (a, b) at which h attains its
maximum (by the compactness of [a, b]). Thus, h′(x) = 0. If h(t) < h(a) for some t ∈ (a, b), then
the same result holds by using the minimum of h.

Theorem (Mean Value Theorem). If f is real and continuous on [a, b] and differentiable on (a, b),
then there is a point x ∈ (a, b) at which

f (b)− f (a) = f ′(x)(b− a)

Corollary. Suppose f is differentiable on (a, b).

1. f ′(x) ≥ 0 for all x ∈ (a, b) =⇒ f is monotonically increasing.

2. f ′(x) = 0 for all x ∈ (a, b) =⇒ f is constant.

3. f ′(x) ≤ 0 for all x ∈ (a, b) =⇒ f is monotonically decreasing.

Proposition. Suppose f is a real differentiable function on [a, b]. If f ′(a) < λ < f ′(b), there is a
point x ∈ (a, b) such that f ′(x) = λ.

Proof. Set g(t) = f (t)− λt. Then g′(a) = f ′(a)− λ < 0 so g(t1) < g(a) for some t1 ∈ (a, b). Also,
g′(b) = f ′(b)− λ > 0 so g(t2) < g(b) for some t2 ∈ (a, b). Thus, we know g attains its minimum
on [a, b] at some point x ∈ (a, b). Thus, g′(x) = 0 and f ′(x) = λ.

Theorem (Taylor’s Theorem). Suppose f is a real function on [a, b], n is a positive integer, f (n−1)

is continuous on [a, b], and f (n)(t) exists for all t ∈ (a, b). Let α, β ∈ [a, b] where α 6= β and define

Pn−1(t) = f (α) + f ′(α)(t− α) +
1
2!

f ′′(α)(t− α)2 + . . . +
1

(n− 1)!
f (n−1)(α)(t− α)n−1

=
n−1

∑
k=0

f (k)(α)
k!

(t− α)k

Then there exists a point x between α and β such that f (β) = Pn−1(β) + f (n)(x)
n! (β− α)n.
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Proof. Let M be the number such that f (β) = Pn−1(β) + M(β − α)n. We want to show that

M = f (n)(x)
n! for some x between α and β. To do so, define g : [a, b] → R by setting g(t) =

f (t)− Pn−1(t)−M(t− α)n. Then g(n)(t) = f (n)(t)− n!M for all t ∈ (a, b). Thus, we need to show
that g(n)(x) = 0 for some x between α and β. Since P(k)

n−1(α) = f (k)(α) for k = 0, 1, . . . , n− 1, we
have g(α) = g′(α) = . . . = g(n−1)(α) = 0. Next note that g(β) = 0 so by the Mean Value Theorem,
g′(x1) = 0 for some x1 between α and β. Since g′(α) = 0 and g′(x1) = 0, by the Mean Value
Theorem, g′′(x2) = 0 for some x2 between α and x1. After n such steps, we have g(n)(xn) = 0 for
some xn between α and xn−1. Since xn is also between α and β, this completes the proof.

Note. When n = 1, this is just the Mean Value Theorem.

Note. The polynomial Pn−1 is a Taylor polynomial and we can ask questions about the sequence
P0, P1, P2, . . . such as does it converge.

Convergence of Functions

Consider the following example of a sequence of functions f1, f2, f3, . . . where fn = x
n ( fn : R→ R).

Then the picture we have is

x

y f1 f2 f3

f4

and the functions are converging “pointwise” to the constant function f (x) = 0. Next consider
the functions fn defined on [0, ∞) where

fn =

{
xn x ∈ [0, 1]

1 x ∈ (1, ∞)

x

y

f1

f3

The picture here is as shown and the limit approaches a function resembling a step. In this, each
fn is continuous, but the pointwise limit is not continuous.

Definition. A sequence of functions { fn} converges uniformly to a function f if for every ε > 0
there is an integer N such that m ≥ N implies | fn(x)− f (x)| ≤ ε for all x ∈ E.

Proposition (Cauchy Criterion). The sequence { fn} converges uniformly if and only if for every
ε > 0 there exists an integer N such that n ≥ N and m ≥ N implies | fn(x)− fm(x)| ≤ ε for all
x ∈ E.
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Theorem. Suppose fn → f uniformly on a set E in a metric space. Let x be a limit point of E and
suppose limt→x fn(t) = An (n = 1, 2, 3, . . .). Then {An} converges and limt→x f (t) = limn→∞ An.
In other words,

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)

Proof. Let ε > 0. By the uniform convergence of { fn}, there exists an N such that n ≥ N, m ≥ N,
t ∈ E imply | fn(t)− fm(t)| ≤ ε. Letting t → x yields |An − Am| ≤ ε when n ≥ N and m ≥ M,
showing that {An} is a Cauchy sequence (of complex numbers) and therefore converges to some
A. Note that for n ∈N and t ∈ E,

| f (t)− A| ≤ | f (t)− fn(t)|+ | fn(t)− An|+ |An − A|

by the Triangle Inequality. Now choose n such that for all t ∈ E, | f (t)− fn(t)| ≤ ε
3 (which we can

do since fn → f uniformly) and such that |An − A| ≤ ε
3 . Then for this n, choose a neighborhood

V of x such that | fn(t) − An| ≤ ε
3 when t ∈ V ∩ E, t 6= x. It follows that | f (t) − A| ≤ ε when

t ∈ V ∩ E, t 6= x, which is equivalent to limt→x f (t) = limn→∞ An.

Corollary. If { fn} is a sequence of continuous functions, and if fn → f uniformly, then f is con-
tinuous.

Proof. By the previous theorem, limt→x fn(t) = An = fn(x) and limt→x f (t) = limn→∞ An =

limn→∞ fn(x) = f (x).

Definition. If X is a metric space, then C (X) denotes the set of all continuous, complex-valued,
and bounded functions with domain X.

Definition. We can associate to each f ∈ C (X) its supremum norm

‖ f ‖ = sup
x∈X
| f (x)|

Proposition. Suppose f , g ∈ C (X).

1. ‖ f ‖ < ∞.

2. ‖ f ‖ = 0 if and only if f is the zero function.

3. ‖ f + g‖ ≤ ‖ f ‖+ ‖g‖.

Proposition. Define the distance between f and g to be ‖ f − g‖. Then C (X) is a metric space.

Proposition. A sequence { fn} converges to f in C (X) if and only if fn → f uniformly on X.

Proposition. The above metric makes C (X) into a complete metric space.

Proof. Suppose { fn} is a Cauchy sequence in C (X). Thus for every ε > 0, there is an N such
that ‖ fn − fm‖ < ε whenever n ≥ N and m ≥ N. Thus there is a function f : X → C to which
{ fn} converges uniformly. Thus f is continuous. Also, f is bounded since there is an n such that
| f (x)− fn(x)| < 1 for all x ∈ X and fn is bounded. Hence f ∈ C (X) and since fn → f uniformly
on X, we have ‖ f − fn‖ → 0 as n→ ∞.

Theorem (Stone-Weierstrass Theorem). If f is a continuous complex function on [a, b], then there
exists a sequence of polynomials {Pn} such that limn→∞ Pn(x) = f (x) uniformly on [a, b]. Further-
more, if f is real, then Pn can be taken to be real.
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